mirror of
https://github.com/serengil/deepface.git
synced 2025-06-06 11:35:21 +00:00
Merge pull request #1298 from serengil/feat-task-0408-batch-support-for-extended-models
batch run support added for facial attribute models
This commit is contained in:
commit
a71828514b
@ -33,7 +33,9 @@ class ApparentAgeClient(Demography):
|
||||
self.model_name = "Age"
|
||||
|
||||
def predict(self, img: np.ndarray) -> np.float64:
|
||||
age_predictions = self.model.predict(img, verbose=0)[0, :]
|
||||
# model.predict causes memory issue when it is called in a for loop
|
||||
# age_predictions = self.model.predict(img, verbose=0)[0, :]
|
||||
age_predictions = self.model(img, training=False).numpy()[0, :]
|
||||
return find_apparent_age(age_predictions)
|
||||
|
||||
|
||||
|
@ -52,7 +52,10 @@ class EmotionClient(Demography):
|
||||
img_gray = cv2.resize(img_gray, (48, 48))
|
||||
img_gray = np.expand_dims(img_gray, axis=0)
|
||||
|
||||
emotion_predictions = self.model.predict(img_gray, verbose=0)[0, :]
|
||||
# model.predict causes memory issue when it is called in a for loop
|
||||
# emotion_predictions = self.model.predict(img_gray, verbose=0)[0, :]
|
||||
emotion_predictions = self.model(img_gray, training=False).numpy()[0, :]
|
||||
|
||||
return emotion_predictions
|
||||
|
||||
|
||||
|
@ -41,7 +41,9 @@ class GenderClient(Demography):
|
||||
self.model_name = "Gender"
|
||||
|
||||
def predict(self, img: np.ndarray) -> np.ndarray:
|
||||
return self.model.predict(img, verbose=0)[0, :]
|
||||
# model.predict causes memory issue when it is called in a for loop
|
||||
# return self.model.predict(img, verbose=0)[0, :]
|
||||
return self.model(img, training=False).numpy()[0, :]
|
||||
|
||||
|
||||
def load_model(
|
||||
|
@ -40,7 +40,9 @@ class RaceClient(Demography):
|
||||
self.model_name = "Race"
|
||||
|
||||
def predict(self, img: np.ndarray) -> np.ndarray:
|
||||
return self.model.predict(img, verbose=0)[0, :]
|
||||
# model.predict causes memory issue when it is called in a for loop
|
||||
# return self.model.predict(img, verbose=0)[0, :]
|
||||
return self.model(img, training=False).numpy()[0, :]
|
||||
|
||||
|
||||
def load_model(
|
||||
|
Loading…
x
Reference in New Issue
Block a user