mirror of
https://github.com/serengil/deepface.git
synced 2025-06-07 20:15:21 +00:00
feat(verbose): Silent tensorflow models output to stdout
This commit is contained in:
parent
56adc351f2
commit
a807284e2a
@ -367,6 +367,7 @@ def analyze(img_path, actions = ('emotion', 'age', 'gender', 'race') , models =
|
|||||||
resp_objects = []
|
resp_objects = []
|
||||||
|
|
||||||
disable_option = (False if len(img_paths) > 1 else True) or not prog_bar
|
disable_option = (False if len(img_paths) > 1 else True) or not prog_bar
|
||||||
|
verbose = int(not disable_option)
|
||||||
|
|
||||||
global_pbar = tqdm(range(0,len(img_paths)), desc='Analyzing', disable = disable_option)
|
global_pbar = tqdm(range(0,len(img_paths)), desc='Analyzing', disable = disable_option)
|
||||||
|
|
||||||
@ -395,7 +396,7 @@ def analyze(img_path, actions = ('emotion', 'age', 'gender', 'race') , models =
|
|||||||
emotion_labels = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral']
|
emotion_labels = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral']
|
||||||
img, region = functions.preprocess_face(img = img_path, target_size = (48, 48), grayscale = True, enforce_detection = enforce_detection, detector_backend = detector_backend, return_region = True)
|
img, region = functions.preprocess_face(img = img_path, target_size = (48, 48), grayscale = True, enforce_detection = enforce_detection, detector_backend = detector_backend, return_region = True)
|
||||||
|
|
||||||
emotion_predictions = models['emotion'].predict(img)[0,:]
|
emotion_predictions = models['emotion'].predict(img, verbose=verbose)[0,:]
|
||||||
|
|
||||||
sum_of_predictions = emotion_predictions.sum()
|
sum_of_predictions = emotion_predictions.sum()
|
||||||
|
|
||||||
@ -412,7 +413,7 @@ def analyze(img_path, actions = ('emotion', 'age', 'gender', 'race') , models =
|
|||||||
if img_224 is None:
|
if img_224 is None:
|
||||||
img_224, region = functions.preprocess_face(img = img_path, target_size = (224, 224), grayscale = False, enforce_detection = enforce_detection, detector_backend = detector_backend, return_region = True)
|
img_224, region = functions.preprocess_face(img = img_path, target_size = (224, 224), grayscale = False, enforce_detection = enforce_detection, detector_backend = detector_backend, return_region = True)
|
||||||
|
|
||||||
age_predictions = models['age'].predict(img_224)[0,:]
|
age_predictions = models['age'].predict(img_224, verbose=verbose)[0,:]
|
||||||
apparent_age = Age.findApparentAge(age_predictions)
|
apparent_age = Age.findApparentAge(age_predictions)
|
||||||
|
|
||||||
resp_obj["age"] = int(apparent_age) #int cast is for the exception - object of type 'float32' is not JSON serializable
|
resp_obj["age"] = int(apparent_age) #int cast is for the exception - object of type 'float32' is not JSON serializable
|
||||||
@ -422,7 +423,7 @@ def analyze(img_path, actions = ('emotion', 'age', 'gender', 'race') , models =
|
|||||||
if img_224 is None:
|
if img_224 is None:
|
||||||
img_224, region = functions.preprocess_face(img = img_path, target_size = (224, 224), grayscale = False, enforce_detection = enforce_detection, detector_backend = detector_backend, return_region = True)
|
img_224, region = functions.preprocess_face(img = img_path, target_size = (224, 224), grayscale = False, enforce_detection = enforce_detection, detector_backend = detector_backend, return_region = True)
|
||||||
|
|
||||||
gender_predictions = models['gender'].predict(img_224)[0,:]
|
gender_predictions = models['gender'].predict(img_224, verbose=verbose)[0,:]
|
||||||
|
|
||||||
gender_labels = ["Woman", "Man"]
|
gender_labels = ["Woman", "Man"]
|
||||||
resp_obj["gender"] = {}
|
resp_obj["gender"] = {}
|
||||||
@ -436,7 +437,7 @@ def analyze(img_path, actions = ('emotion', 'age', 'gender', 'race') , models =
|
|||||||
elif action == 'race':
|
elif action == 'race':
|
||||||
if img_224 is None:
|
if img_224 is None:
|
||||||
img_224, region = functions.preprocess_face(img = img_path, target_size = (224, 224), grayscale = False, enforce_detection = enforce_detection, detector_backend = detector_backend, return_region = True) #just emotion model expects grayscale images
|
img_224, region = functions.preprocess_face(img = img_path, target_size = (224, 224), grayscale = False, enforce_detection = enforce_detection, detector_backend = detector_backend, return_region = True) #just emotion model expects grayscale images
|
||||||
race_predictions = models['race'].predict(img_224)[0,:]
|
race_predictions = models['race'].predict(img_224, verbose=verbose)[0,:]
|
||||||
race_labels = ['asian', 'indian', 'black', 'white', 'middle eastern', 'latino hispanic']
|
race_labels = ['asian', 'indian', 'black', 'white', 'middle eastern', 'latino hispanic']
|
||||||
|
|
||||||
sum_of_predictions = race_predictions.sum()
|
sum_of_predictions = race_predictions.sum()
|
||||||
|
Loading…
x
Reference in New Issue
Block a user