mirror of
https://github.com/serengil/deepface.git
synced 2025-06-07 03:55:21 +00:00
Merge branch 'serengil:master' into master
This commit is contained in:
commit
aad9697feb
@ -1,8 +1,8 @@
|
|||||||
from typing import List
|
from typing import List
|
||||||
import os
|
import os
|
||||||
|
from enum import IntEnum
|
||||||
import gdown
|
import gdown
|
||||||
import cv2
|
import cv2
|
||||||
import pandas as pd
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from deepface.models.face_detection import OpenCv
|
from deepface.models.face_detection import OpenCv
|
||||||
from deepface.commons import folder_utils
|
from deepface.commons import folder_utils
|
||||||
@ -50,11 +50,10 @@ class SsdClient(Detector):
|
|||||||
+ "You can install it as pip install opencv-contrib-python."
|
+ "You can install it as pip install opencv-contrib-python."
|
||||||
) from err
|
) from err
|
||||||
|
|
||||||
detector = {}
|
return {
|
||||||
detector["face_detector"] = face_detector
|
"face_detector": face_detector,
|
||||||
detector["opencv_module"] = OpenCv.OpenCvClient()
|
"opencv_module": OpenCv.OpenCvClient()
|
||||||
|
}
|
||||||
return detector
|
|
||||||
|
|
||||||
def detect_faces(self, img: np.ndarray) -> List[FacialAreaRegion]:
|
def detect_faces(self, img: np.ndarray) -> List[FacialAreaRegion]:
|
||||||
"""
|
"""
|
||||||
@ -66,14 +65,13 @@ class SsdClient(Detector):
|
|||||||
Returns:
|
Returns:
|
||||||
results (List[FacialAreaRegion]): A list of FacialAreaRegion objects
|
results (List[FacialAreaRegion]): A list of FacialAreaRegion objects
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
# Because cv2.dnn.blobFromImage expects CV_8U (8-bit unsigned integer) values
|
||||||
|
if img.dtype != np.uint8:
|
||||||
|
img = img.astype(np.uint8)
|
||||||
|
|
||||||
opencv_module: OpenCv.OpenCvClient = self.model["opencv_module"]
|
opencv_module: OpenCv.OpenCvClient = self.model["opencv_module"]
|
||||||
|
|
||||||
resp = []
|
|
||||||
|
|
||||||
detected_face = None
|
|
||||||
|
|
||||||
ssd_labels = ["img_id", "is_face", "confidence", "left", "top", "right", "bottom"]
|
|
||||||
|
|
||||||
target_size = (300, 300)
|
target_size = (300, 300)
|
||||||
|
|
||||||
original_size = img.shape
|
original_size = img.shape
|
||||||
@ -89,51 +87,45 @@ class SsdClient(Detector):
|
|||||||
face_detector.setInput(imageBlob)
|
face_detector.setInput(imageBlob)
|
||||||
detections = face_detector.forward()
|
detections = face_detector.forward()
|
||||||
|
|
||||||
detections_df = pd.DataFrame(detections[0][0], columns=ssd_labels)
|
class ssd_labels(IntEnum):
|
||||||
|
img_id = 0
|
||||||
|
is_face = 1
|
||||||
|
confidence = 2
|
||||||
|
left = 3
|
||||||
|
top = 4
|
||||||
|
right = 5
|
||||||
|
bottom = 6
|
||||||
|
|
||||||
detections_df = detections_df[detections_df["is_face"] == 1] # 0: background, 1: face
|
faces = detections[0][0]
|
||||||
detections_df = detections_df[detections_df["confidence"] >= 0.90]
|
faces = faces[(faces[:, ssd_labels.is_face] == 1) & (faces[:, ssd_labels.confidence] >= 0.90)]
|
||||||
|
margins = [ssd_labels.left, ssd_labels.top, ssd_labels.right, ssd_labels.bottom]
|
||||||
|
faces[:, margins] = np.int32(faces[:, margins] * 300)
|
||||||
|
faces[:, margins] = np.int32(faces[:, margins] * [aspect_ratio_x, aspect_ratio_y, aspect_ratio_x, aspect_ratio_y])
|
||||||
|
faces[:, [ssd_labels.right, ssd_labels.bottom]] -= faces[:, [ssd_labels.left, ssd_labels.top]]
|
||||||
|
|
||||||
detections_df["left"] = (detections_df["left"] * 300).astype(int)
|
resp = []
|
||||||
detections_df["bottom"] = (detections_df["bottom"] * 300).astype(int)
|
for face in faces:
|
||||||
detections_df["right"] = (detections_df["right"] * 300).astype(int)
|
confidence = face[2]
|
||||||
detections_df["top"] = (detections_df["top"] * 300).astype(int)
|
x, y, w, h = map(int, face[margins])
|
||||||
|
detected_face = img[y : y + h, x : x + w]
|
||||||
|
|
||||||
if detections_df.shape[0] > 0:
|
left_eye, right_eye = opencv_module.find_eyes(detected_face)
|
||||||
|
|
||||||
for _, instance in detections_df.iterrows():
|
# eyes found in the detected face instead image itself
|
||||||
|
# detected face's coordinates should be added
|
||||||
left = instance["left"]
|
if left_eye is not None:
|
||||||
right = instance["right"]
|
left_eye = x + int(left_eye[0]), y + int(left_eye[1])
|
||||||
bottom = instance["bottom"]
|
if right_eye is not None:
|
||||||
top = instance["top"]
|
right_eye = x + int(right_eye[0]), y + int(right_eye[1])
|
||||||
confidence = instance["confidence"]
|
|
||||||
|
|
||||||
x = int(left * aspect_ratio_x)
|
|
||||||
y = int(top * aspect_ratio_y)
|
|
||||||
w = int(right * aspect_ratio_x) - int(left * aspect_ratio_x)
|
|
||||||
h = int(bottom * aspect_ratio_y) - int(top * aspect_ratio_y)
|
|
||||||
|
|
||||||
detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
|
|
||||||
|
|
||||||
left_eye, right_eye = opencv_module.find_eyes(detected_face)
|
|
||||||
|
|
||||||
# eyes found in the detected face instead image itself
|
|
||||||
# detected face's coordinates should be added
|
|
||||||
if left_eye is not None:
|
|
||||||
left_eye = (int(x + left_eye[0]), int(y + left_eye[1]))
|
|
||||||
if right_eye is not None:
|
|
||||||
right_eye = (int(x + right_eye[0]), int(y + right_eye[1]))
|
|
||||||
|
|
||||||
facial_area = FacialAreaRegion(
|
|
||||||
x=x,
|
|
||||||
y=y,
|
|
||||||
w=w,
|
|
||||||
h=h,
|
|
||||||
left_eye=left_eye,
|
|
||||||
right_eye=right_eye,
|
|
||||||
confidence=confidence,
|
|
||||||
)
|
|
||||||
resp.append(facial_area)
|
|
||||||
|
|
||||||
|
facial_area = FacialAreaRegion(
|
||||||
|
x=x,
|
||||||
|
y=y,
|
||||||
|
w=w,
|
||||||
|
h=h,
|
||||||
|
left_eye=left_eye,
|
||||||
|
right_eye=right_eye,
|
||||||
|
confidence=confidence,
|
||||||
|
)
|
||||||
|
resp.append(facial_area)
|
||||||
return resp
|
return resp
|
||||||
|
@ -13,7 +13,7 @@ from deepface.commons.logger import Logger
|
|||||||
|
|
||||||
logger = Logger()
|
logger = Logger()
|
||||||
|
|
||||||
detectors = ["opencv", "mtcnn"]
|
detectors = ["opencv", "mtcnn", "ssd"]
|
||||||
|
|
||||||
|
|
||||||
def test_different_detectors():
|
def test_different_detectors():
|
||||||
|
Loading…
x
Reference in New Issue
Block a user