mirror of
https://github.com/serengil/deepface.git
synced 2025-06-07 12:05:22 +00:00
Add batched version of the find function
This commit is contained in:
parent
937513453e
commit
ad0cbaf2dc
@ -276,7 +276,8 @@ def find(
|
|||||||
silent: bool = False,
|
silent: bool = False,
|
||||||
refresh_database: bool = True,
|
refresh_database: bool = True,
|
||||||
anti_spoofing: bool = False,
|
anti_spoofing: bool = False,
|
||||||
) -> List[pd.DataFrame]:
|
batched: bool = False,
|
||||||
|
) -> Union[List[pd.DataFrame], List[List[Dict[str, Any]]]]:
|
||||||
"""
|
"""
|
||||||
Identify individuals in a database
|
Identify individuals in a database
|
||||||
Args:
|
Args:
|
||||||
@ -322,9 +323,19 @@ def find(
|
|||||||
anti_spoofing (boolean): Flag to enable anti spoofing (default is False).
|
anti_spoofing (boolean): Flag to enable anti spoofing (default is False).
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
results (List[pd.DataFrame]): A list of pandas dataframes. Each dataframe corresponds
|
results (List[pd.DataFrame] or List[List[Dict[str, Any]]]):
|
||||||
to the identity information for an individual detected in the source image.
|
A list of pandas dataframes (if `batched=False`) or
|
||||||
The DataFrame columns include:
|
a list of dicts (if `batched=True`).
|
||||||
|
Each dataframe or dict corresponds to the identity information for
|
||||||
|
an individual detected in the source image.
|
||||||
|
|
||||||
|
Note: If you have a large database and/or a source photo with many faces,
|
||||||
|
use `batched=True`, as it is optimized for large batch processing.
|
||||||
|
Please pay attention that when using `batched=True`, the function returns
|
||||||
|
a list of dicts (not a list of DataFrames),
|
||||||
|
but with the same keys as the columns in the DataFrame.
|
||||||
|
|
||||||
|
The DataFrame columns or dict keys include:
|
||||||
|
|
||||||
- 'identity': Identity label of the detected individual.
|
- 'identity': Identity label of the detected individual.
|
||||||
|
|
||||||
@ -353,6 +364,7 @@ def find(
|
|||||||
silent=silent,
|
silent=silent,
|
||||||
refresh_database=refresh_database,
|
refresh_database=refresh_database,
|
||||||
anti_spoofing=anti_spoofing,
|
anti_spoofing=anti_spoofing,
|
||||||
|
batched=batched
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@ -31,7 +31,8 @@ def find(
|
|||||||
silent: bool = False,
|
silent: bool = False,
|
||||||
refresh_database: bool = True,
|
refresh_database: bool = True,
|
||||||
anti_spoofing: bool = False,
|
anti_spoofing: bool = False,
|
||||||
) -> List[pd.DataFrame]:
|
batched: bool = False,
|
||||||
|
) -> Union[List[pd.DataFrame], List[List[Dict[str, Any]]]]:
|
||||||
"""
|
"""
|
||||||
Identify individuals in a database
|
Identify individuals in a database
|
||||||
|
|
||||||
@ -77,9 +78,19 @@ def find(
|
|||||||
|
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
results (List[pd.DataFrame]): A list of pandas dataframes. Each dataframe corresponds
|
results (List[pd.DataFrame] or List[List[Dict[str, Any]]]):
|
||||||
to the identity information for an individual detected in the source image.
|
A list of pandas dataframes (if `batched=False`) or
|
||||||
The DataFrame columns include:
|
a list of dicts (if `batched=True`).
|
||||||
|
Each dataframe or dict corresponds to the identity information for
|
||||||
|
an individual detected in the source image.
|
||||||
|
|
||||||
|
Note: If you have a large database and/or a source photo with many faces,
|
||||||
|
use `batched=True`, as it is optimized for large batch processing.
|
||||||
|
Please pay attention that when using `batched=True`, the function returns
|
||||||
|
a list of dicts (not a list of DataFrames),
|
||||||
|
but with the same keys as the columns in the DataFrame.
|
||||||
|
|
||||||
|
The DataFrame columns or dict keys include:
|
||||||
|
|
||||||
- 'identity': Identity label of the detected individual.
|
- 'identity': Identity label of the detected individual.
|
||||||
|
|
||||||
@ -233,10 +244,6 @@ def find(
|
|||||||
|
|
||||||
# ----------------------------
|
# ----------------------------
|
||||||
# now, we got representations for facial database
|
# now, we got representations for facial database
|
||||||
df = pd.DataFrame(representations)
|
|
||||||
|
|
||||||
if silent is False:
|
|
||||||
logger.info(f"Searching {img_path} in {df.shape[0]} length datastore")
|
|
||||||
|
|
||||||
# img path might have more than once face
|
# img path might have more than once face
|
||||||
source_objs = detection.extract_faces(
|
source_objs = detection.extract_faces(
|
||||||
@ -249,6 +256,24 @@ def find(
|
|||||||
anti_spoofing=anti_spoofing,
|
anti_spoofing=anti_spoofing,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
if batched:
|
||||||
|
return find_batched(
|
||||||
|
representations,
|
||||||
|
source_objs,
|
||||||
|
model_name,
|
||||||
|
distance_metric,
|
||||||
|
enforce_detection,
|
||||||
|
align,
|
||||||
|
threshold,
|
||||||
|
normalization,
|
||||||
|
anti_spoofing
|
||||||
|
)
|
||||||
|
|
||||||
|
df = pd.DataFrame(representations)
|
||||||
|
|
||||||
|
if silent is False:
|
||||||
|
logger.info(f"Searching {img_path} in {df.shape[0]} length datastore")
|
||||||
|
|
||||||
resp_obj = []
|
resp_obj = []
|
||||||
|
|
||||||
for source_obj in source_objs:
|
for source_obj in source_objs:
|
||||||
@ -415,3 +440,233 @@ def __find_bulk_embeddings(
|
|||||||
)
|
)
|
||||||
|
|
||||||
return representations
|
return representations
|
||||||
|
|
||||||
|
def find_batched(
|
||||||
|
representations: List[Dict[str, Any]],
|
||||||
|
source_objs: List[Dict[str, Any]],
|
||||||
|
model_name: str = "VGG-Face",
|
||||||
|
distance_metric: str = "cosine",
|
||||||
|
enforce_detection: bool = True,
|
||||||
|
align: bool = True,
|
||||||
|
threshold: Optional[float] = None,
|
||||||
|
normalization: str = "base",
|
||||||
|
anti_spoofing: bool = False,
|
||||||
|
) -> List[List[Dict[str, Any]]]:
|
||||||
|
"""
|
||||||
|
Perform batched face recognition by comparing source face embeddingswith a set of
|
||||||
|
target embeddings. It calculates pairwise distances between the source and target
|
||||||
|
embeddings using the specified distance metric.
|
||||||
|
The function uses batch processing for efficient computation of distances.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
representations (List[Dict[str, Any]]):
|
||||||
|
A list of dictionaries containing precomputed target embeddings and associated metadata.
|
||||||
|
Each dictionary should have at least the key `embedding`.
|
||||||
|
|
||||||
|
source_objs (List[Dict[str, Any]]):
|
||||||
|
A list of dictionaries representing the source images to compare against
|
||||||
|
the target embeddings. Each dictionary should contain:
|
||||||
|
- `face`: The image data or path to the source face image.
|
||||||
|
- `facial_area`: A dictionary with keys `x`, `y`, `w`, `h`
|
||||||
|
indicating the facial region.
|
||||||
|
- Optionally, `is_real`: A boolean indicating if the face is real
|
||||||
|
(used for anti-spoofing).
|
||||||
|
|
||||||
|
model_name (str): Model for face recognition. Options: VGG-Face, Facenet, Facenet512,
|
||||||
|
OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace and GhostFaceNet (default is VGG-Face).
|
||||||
|
|
||||||
|
distance_metric (string): Metric for measuring similarity. Options: 'cosine',
|
||||||
|
'euclidean', 'euclidean_l2'.
|
||||||
|
|
||||||
|
enforce_detection (boolean): If no face is detected in an image, raise an exception.
|
||||||
|
Default is True. Set to False to avoid the exception for low-resolution images.
|
||||||
|
|
||||||
|
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
|
||||||
|
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'centerface' or 'skip'.
|
||||||
|
|
||||||
|
align (boolean): Perform alignment based on the eye positions.
|
||||||
|
|
||||||
|
threshold (float): Specify a threshold to determine whether a pair represents the same
|
||||||
|
person or different individuals. This threshold is used for comparing distances.
|
||||||
|
If left unset, default pre-tuned threshold values will be applied based on the specified
|
||||||
|
model name and distance metric (default is None).
|
||||||
|
|
||||||
|
normalization (string): Normalize the input image before feeding it to the model.
|
||||||
|
Default is base. Options: base, raw, Facenet, Facenet2018, VGGFace, VGGFace2, ArcFace
|
||||||
|
|
||||||
|
silent (boolean): Suppress or allow some log messages for a quieter analysis process.
|
||||||
|
|
||||||
|
anti_spoofing (boolean): Flag to enable anti spoofing (default is False).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List[List[Dict[str, Any]]]:
|
||||||
|
A list where each element corresponds to a source face and
|
||||||
|
contains a list of dictionaries with matching faces.
|
||||||
|
"""
|
||||||
|
embeddings_list = []
|
||||||
|
valid_mask = []
|
||||||
|
other_keys = set()
|
||||||
|
|
||||||
|
for item in representations:
|
||||||
|
emb = item.get('embedding')
|
||||||
|
if emb is not None:
|
||||||
|
embeddings_list.append(emb)
|
||||||
|
valid_mask.append(True)
|
||||||
|
else:
|
||||||
|
embeddings_list.append(np.zeros_like(representations[0]['embedding']))
|
||||||
|
valid_mask.append(False)
|
||||||
|
|
||||||
|
other_keys.update(item.keys())
|
||||||
|
|
||||||
|
# remove embedding key from other keys
|
||||||
|
other_keys.discard('embedding')
|
||||||
|
other_keys = list(other_keys)
|
||||||
|
|
||||||
|
embeddings = np.array(embeddings_list) # (N, D)
|
||||||
|
valid_mask = np.array(valid_mask) # (N,)
|
||||||
|
|
||||||
|
data = {
|
||||||
|
key: np.array([item.get(key, None) for item in representations])
|
||||||
|
for key in other_keys
|
||||||
|
}
|
||||||
|
|
||||||
|
target_embeddings = []
|
||||||
|
source_regions = []
|
||||||
|
target_thresholds = []
|
||||||
|
|
||||||
|
for source_obj in source_objs:
|
||||||
|
if anti_spoofing and not source_obj.get("is_real", True):
|
||||||
|
raise ValueError("Spoof detected in the given image.")
|
||||||
|
|
||||||
|
source_img = source_obj["face"]
|
||||||
|
source_region = source_obj["facial_area"]
|
||||||
|
|
||||||
|
target_embedding_obj = representation.represent(
|
||||||
|
img_path=source_img,
|
||||||
|
model_name=model_name,
|
||||||
|
enforce_detection=enforce_detection,
|
||||||
|
detector_backend="skip",
|
||||||
|
align=align,
|
||||||
|
normalization=normalization,
|
||||||
|
)
|
||||||
|
target_representation = target_embedding_obj[0]["embedding"]
|
||||||
|
|
||||||
|
target_embeddings.append(target_representation)
|
||||||
|
source_regions.append(source_region)
|
||||||
|
|
||||||
|
target_threshold = threshold or verification.find_threshold(model_name, distance_metric)
|
||||||
|
target_thresholds.append(target_threshold)
|
||||||
|
|
||||||
|
target_embeddings = np.array(target_embeddings) # (M, D)
|
||||||
|
target_thresholds = np.array(target_thresholds) # (M,)
|
||||||
|
source_regions_arr = {
|
||||||
|
'source_x': np.array([region['x'] for region in source_regions]),
|
||||||
|
'source_y': np.array([region['y'] for region in source_regions]),
|
||||||
|
'source_w': np.array([region['w'] for region in source_regions]),
|
||||||
|
'source_h': np.array([region['h'] for region in source_regions]),
|
||||||
|
}
|
||||||
|
|
||||||
|
def l2_normalize(
|
||||||
|
x: np.ndarray, axis: int = 1, epsilon: float = 1e-10
|
||||||
|
) -> np.ndarray:
|
||||||
|
"""
|
||||||
|
Normalize input vectors along a specified axis using L2 normalization
|
||||||
|
Args:
|
||||||
|
x (np.ndarray): input array
|
||||||
|
axis (int): axis along which to normalize
|
||||||
|
epsilon (float): small value to avoid division by zero
|
||||||
|
Returns:
|
||||||
|
np.ndarray: L2-normalized array of the same shape as input
|
||||||
|
"""
|
||||||
|
norm = np.linalg.norm(x, axis=axis, keepdims=True)
|
||||||
|
return x / (norm + epsilon)
|
||||||
|
|
||||||
|
def find_cosine_distance_batch(
|
||||||
|
embeddings: np.ndarray, target_embeddings: np.ndarray
|
||||||
|
) -> np.ndarray:
|
||||||
|
"""
|
||||||
|
Find the cosine distances between batches of embeddings
|
||||||
|
Args:
|
||||||
|
embeddings (np.ndarray): array of shape (N, D)
|
||||||
|
target_embeddings (np.ndarray): array of shape (M, D)
|
||||||
|
Returns:
|
||||||
|
np.ndarray: distance matrix of shape (M, N)
|
||||||
|
"""
|
||||||
|
embeddings_norm = l2_normalize(embeddings, axis=1)
|
||||||
|
target_embeddings_norm = l2_normalize(target_embeddings, axis=1)
|
||||||
|
cosine_similarities = np.dot(target_embeddings_norm, embeddings_norm.T)
|
||||||
|
cosine_distances = 1 - cosine_similarities
|
||||||
|
return cosine_distances
|
||||||
|
|
||||||
|
def find_euclidean_distance_batch(
|
||||||
|
embeddings: np.ndarray, target_embeddings: np.ndarray
|
||||||
|
) -> np.ndarray:
|
||||||
|
"""
|
||||||
|
Find the Euclidean distances between batches of embeddings
|
||||||
|
Args:
|
||||||
|
embeddings (np.ndarray): array of shape (N, D)
|
||||||
|
target_embeddings (np.ndarray): array of shape (M, D)
|
||||||
|
Returns:
|
||||||
|
np.ndarray: distance matrix of shape (M, N)
|
||||||
|
"""
|
||||||
|
diff = embeddings[None, :, :] - target_embeddings[:, None, :] # (M, N, D)
|
||||||
|
distances = np.linalg.norm(diff, axis=2) # (M, N)
|
||||||
|
return distances
|
||||||
|
|
||||||
|
def find_distance_batch(
|
||||||
|
embeddings: np.ndarray, target_embeddings: np.ndarray, distance_metric: str,
|
||||||
|
) -> np.ndarray:
|
||||||
|
"""
|
||||||
|
Find pairwise distances between batches of embeddings using the specified distance metric
|
||||||
|
Args:
|
||||||
|
embeddings (np.ndarray): array of shape (N, D)
|
||||||
|
target_embeddings (np.ndarray): array of shape (M, D)
|
||||||
|
distance_metric (str): distance metric ('cosine', 'euclidean', 'euclidean_l2')
|
||||||
|
Returns:
|
||||||
|
np.ndarray: distance matrix of shape (M, N)
|
||||||
|
"""
|
||||||
|
if distance_metric == "cosine":
|
||||||
|
distances = find_cosine_distance_batch(embeddings, target_embeddings)
|
||||||
|
elif distance_metric == "euclidean":
|
||||||
|
distances = find_euclidean_distance_batch(embeddings, target_embeddings)
|
||||||
|
elif distance_metric == "euclidean_l2":
|
||||||
|
embeddings_norm = l2_normalize(embeddings, axis=1)
|
||||||
|
target_embeddings_norm = l2_normalize(target_embeddings, axis=1)
|
||||||
|
distances = find_euclidean_distance_batch(embeddings_norm, target_embeddings_norm)
|
||||||
|
else:
|
||||||
|
raise ValueError("Invalid distance_metric passed - ", distance_metric)
|
||||||
|
return distances
|
||||||
|
|
||||||
|
distances = find_distance_batch(embeddings, target_embeddings, distance_metric) # (M, N)
|
||||||
|
distances[:, ~valid_mask] = np.inf
|
||||||
|
|
||||||
|
resp_obj = []
|
||||||
|
|
||||||
|
for i in range(len(target_embeddings)):
|
||||||
|
target_distances = distances[i] # (N,)
|
||||||
|
target_threshold = target_thresholds[i]
|
||||||
|
|
||||||
|
N = embeddings.shape[0]
|
||||||
|
result_data = dict(data)
|
||||||
|
result_data.update({
|
||||||
|
'source_x': np.full(N, source_regions_arr['source_x'][i]),
|
||||||
|
'source_y': np.full(N, source_regions_arr['source_y'][i]),
|
||||||
|
'source_w': np.full(N, source_regions_arr['source_w'][i]),
|
||||||
|
'source_h': np.full(N, source_regions_arr['source_h'][i]),
|
||||||
|
'threshold': np.full(N, target_threshold),
|
||||||
|
'distance': target_distances,
|
||||||
|
})
|
||||||
|
|
||||||
|
mask = target_distances <= target_threshold
|
||||||
|
filtered_data = {key: value[mask] for key, value in result_data.items()}
|
||||||
|
|
||||||
|
sorted_indices = np.argsort(filtered_data['distance'])
|
||||||
|
sorted_data = {key: value[sorted_indices] for key, value in filtered_data.items()}
|
||||||
|
|
||||||
|
num_results = len(sorted_data['distance'])
|
||||||
|
result_dicts = [
|
||||||
|
{key: sorted_data[key][i] for key in sorted_data}
|
||||||
|
for i in range(num_results)
|
||||||
|
]
|
||||||
|
resp_obj.append(result_dicts)
|
||||||
|
return resp_obj
|
||||||
|
Loading…
x
Reference in New Issue
Block a user