mirror of
https://github.com/serengil/deepface.git
synced 2025-06-06 19:45:21 +00:00
tf 2 compatible
This commit is contained in:
parent
6b25272964
commit
ada31621ac
@ -1,11 +1,12 @@
|
||||
import os
|
||||
from pathlib import Path
|
||||
import gdown
|
||||
import keras
|
||||
from keras.models import Model
|
||||
from keras.layers import Conv2D, Activation, Input, Add, MaxPooling2D, Flatten, Dense, Dropout
|
||||
import zipfile
|
||||
|
||||
from tensorflow import keras
|
||||
from tensorflow.keras.models import Model
|
||||
from tensorflow.keras.layers import Conv2D, Activation, Input, Add, MaxPooling2D, Flatten, Dense, Dropout
|
||||
|
||||
#-------------------------------------
|
||||
|
||||
def loadModel(url = 'https://drive.google.com/uc?id=1uRLtBCTQQAvHJ_KVrdbRJiCKxU8m5q2J'):
|
||||
@ -14,15 +15,15 @@ def loadModel(url = 'https://drive.google.com/uc?id=1uRLtBCTQQAvHJ_KVrdbRJiCKxU8
|
||||
|
||||
x = Conv2D(20, (4, 4), name='Conv1', activation='relu', input_shape=(55, 47, 3))(myInput)
|
||||
x = MaxPooling2D(pool_size=2, strides=2, name='Pool1')(x)
|
||||
x = Dropout(rate=1, name='D1')(x)
|
||||
x = Dropout(rate=0.99, name='D1')(x)
|
||||
|
||||
x = Conv2D(40, (3, 3), name='Conv2', activation='relu')(x)
|
||||
x = MaxPooling2D(pool_size=2, strides=2, name='Pool2')(x)
|
||||
x = Dropout(rate=1, name='D2')(x)
|
||||
x = Dropout(rate=0.99, name='D2')(x)
|
||||
|
||||
x = Conv2D(60, (3, 3), name='Conv3', activation='relu')(x)
|
||||
x = MaxPooling2D(pool_size=2, strides=2, name='Pool3')(x)
|
||||
x = Dropout(rate=1, name='D3')(x)
|
||||
x = Dropout(rate=0.99, name='D3')(x)
|
||||
|
||||
x1 = Flatten()(x)
|
||||
fc11 = Dense(160, name = 'fc11')(x1)
|
||||
|
@ -3,19 +3,19 @@ from pathlib import Path
|
||||
import gdown
|
||||
from functools import partial
|
||||
|
||||
from keras.models import Model
|
||||
from keras.layers import Activation
|
||||
from keras.layers import BatchNormalization
|
||||
from keras.layers import Concatenate
|
||||
from keras.layers import Conv2D
|
||||
from keras.layers import Dense
|
||||
from keras.layers import Dropout
|
||||
from keras.layers import GlobalAveragePooling2D
|
||||
from keras.layers import Input
|
||||
from keras.layers import Lambda
|
||||
from keras.layers import MaxPooling2D
|
||||
from keras.layers import add
|
||||
from keras import backend as K
|
||||
from tensorflow.keras.models import Model
|
||||
from tensorflow.keras.layers import Activation
|
||||
from tensorflow.keras.layers import BatchNormalization
|
||||
from tensorflow.keras.layers import Concatenate
|
||||
from tensorflow.keras.layers import Conv2D
|
||||
from tensorflow.keras.layers import Dense
|
||||
from tensorflow.keras.layers import Dropout
|
||||
from tensorflow.keras.layers import GlobalAveragePooling2D
|
||||
from tensorflow.keras.layers import Input
|
||||
from tensorflow.keras.layers import Lambda
|
||||
from tensorflow.keras.layers import MaxPooling2D
|
||||
from tensorflow.keras.layers import add
|
||||
from tensorflow.keras import backend as K
|
||||
|
||||
def scaling(x, scale):
|
||||
return x * scale
|
||||
|
@ -1,11 +1,12 @@
|
||||
import os
|
||||
from pathlib import Path
|
||||
import gdown
|
||||
import keras
|
||||
from keras.models import Model, Sequential
|
||||
from keras.layers import Convolution2D, LocallyConnected2D, MaxPooling2D, Flatten, Dense, Dropout
|
||||
import zipfile
|
||||
|
||||
from tensorflow import keras
|
||||
from tensorflow.keras.models import Model, Sequential
|
||||
from tensorflow.keras.layers import Convolution2D, LocallyConnected2D, MaxPooling2D, Flatten, Dense, Dropout
|
||||
|
||||
#-------------------------------------
|
||||
|
||||
def loadModel(url = 'https://github.com/swghosh/DeepFace/releases/download/weights-vggface2-2d-aligned/VGGFace2_DeepFace_weights_val-0.9034.h5.zip'):
|
||||
|
@ -3,15 +3,13 @@ from pathlib import Path
|
||||
import gdown
|
||||
|
||||
import tensorflow as tf
|
||||
import keras
|
||||
from keras.models import Model, Sequential
|
||||
from keras.layers import Conv2D, ZeroPadding2D, Activation, Input, concatenate
|
||||
from keras.layers.core import Dense, Activation, Lambda, Flatten
|
||||
from keras.layers.pooling import MaxPooling2D, AveragePooling2D
|
||||
from keras.layers.merge import Concatenate
|
||||
from keras.layers.normalization import BatchNormalization
|
||||
from keras.models import load_model
|
||||
from keras import backend as K
|
||||
from tensorflow import keras
|
||||
from tensorflow.keras.models import Model, Sequential
|
||||
from tensorflow.keras.layers import Conv2D, ZeroPadding2D, Activation, Input, concatenate
|
||||
from tensorflow.keras.layers import Dense, Activation, Lambda, Flatten, BatchNormalization
|
||||
from tensorflow.keras.layers import MaxPooling2D, AveragePooling2D
|
||||
from tensorflow.keras.models import load_model
|
||||
from tensorflow.keras import backend as K
|
||||
|
||||
#---------------------------------------
|
||||
|
||||
|
@ -1,9 +1,17 @@
|
||||
import os
|
||||
from pathlib import Path
|
||||
from keras.models import Model, Sequential
|
||||
from keras.layers import Input, Convolution2D, ZeroPadding2D, MaxPooling2D, Flatten, Dense, Dropout, Activation
|
||||
import gdown
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
if int(tf.__version__.split(".")[0]) == 1:
|
||||
from keras.models import Model, Sequential
|
||||
from keras.layers import Input, Convolution2D, ZeroPadding2D, MaxPooling2D, Flatten, Dense, Dropout, Activation
|
||||
else:
|
||||
from tensorflow import keras
|
||||
from tensorflow.keras.models import Model, Sequential
|
||||
from tensorflow.keras.layers import Input, Convolution2D, ZeroPadding2D, MaxPooling2D, Flatten, Dense, Dropout, Activation
|
||||
|
||||
#---------------------------------------
|
||||
|
||||
def baseModel():
|
||||
|
@ -1,9 +1,6 @@
|
||||
import os
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from keras.preprocessing.image import load_img, save_img, img_to_array
|
||||
from keras.applications.imagenet_utils import preprocess_input
|
||||
from keras.preprocessing import image
|
||||
import cv2
|
||||
from pathlib import Path
|
||||
import gdown
|
||||
@ -14,12 +11,26 @@ import copy
|
||||
import base64
|
||||
import multiprocessing
|
||||
import subprocess
|
||||
import tensorflow as tf
|
||||
import keras
|
||||
import bz2
|
||||
from deepface.commons import distance
|
||||
from mtcnn import MTCNN #0.1.0
|
||||
|
||||
import tensorflow as tf
|
||||
tf_version = int(tf.__version__.split(".")[0])
|
||||
|
||||
if tf_version == 1:
|
||||
import keras
|
||||
from keras.preprocessing.image import load_img, save_img, img_to_array
|
||||
from keras.applications.imagenet_utils import preprocess_input
|
||||
from keras.preprocessing import image
|
||||
elif tf_version == 2:
|
||||
from tensorflow import keras
|
||||
from tensorflow.keras.preprocessing.image import load_img, save_img, img_to_array
|
||||
from tensorflow.keras.applications.imagenet_utils import preprocess_input
|
||||
from tensorflow.keras.preprocessing import image
|
||||
|
||||
#--------------------------------------------------
|
||||
|
||||
def initialize_input(img1_path, img2_path = None):
|
||||
|
||||
if type(img1_path) == list:
|
||||
|
@ -1,12 +1,20 @@
|
||||
#from basemodels import VGGFace
|
||||
from deepface.basemodels import VGGFace
|
||||
|
||||
import os
|
||||
from pathlib import Path
|
||||
import gdown
|
||||
import numpy as np
|
||||
from keras.models import Model, Sequential
|
||||
from keras.layers import Convolution2D, Flatten, Activation
|
||||
|
||||
import tensorflow as tf
|
||||
tf_version = int(tf.__version__.split(".")[0])
|
||||
|
||||
if tf_version == 1:
|
||||
import keras
|
||||
from keras.models import Model, Sequential
|
||||
from keras.layers import Convolution2D, Flatten, Activation
|
||||
elif tf_version == 2:
|
||||
from tensorflow import keras
|
||||
from tensorflow.keras.models import Model, Sequential
|
||||
from tensorflow.keras.layers import Convolution2D, Flatten, Activation
|
||||
|
||||
def loadModel():
|
||||
|
||||
|
@ -1,10 +1,20 @@
|
||||
import os
|
||||
import gdown
|
||||
from pathlib import Path
|
||||
from keras.models import Model, Sequential
|
||||
from keras.layers import Conv2D, MaxPooling2D, AveragePooling2D, Flatten, Dense, Dropout
|
||||
import zipfile
|
||||
|
||||
import tensorflow as tf
|
||||
tf_version = int(tf.__version__.split(".")[0])
|
||||
|
||||
if tf_version == 1:
|
||||
import keras
|
||||
from keras.models import Model, Sequential
|
||||
from keras.layers import Conv2D, MaxPooling2D, AveragePooling2D, Flatten, Dense, Dropout
|
||||
elif tf_version == 2:
|
||||
from tensorflow import keras
|
||||
from tensorflow.keras.models import Model, Sequential
|
||||
from tensorflow.keras.layers import Conv2D, MaxPooling2D, AveragePooling2D, Flatten, Dense, Dropout
|
||||
|
||||
def loadModel():
|
||||
|
||||
num_classes = 7
|
||||
|
@ -1,12 +1,18 @@
|
||||
#from basemodels import VGGFace
|
||||
from deepface.basemodels import VGGFace
|
||||
|
||||
import os
|
||||
from pathlib import Path
|
||||
import gdown
|
||||
import numpy as np
|
||||
from keras.models import Model, Sequential
|
||||
from keras.layers import Convolution2D, Flatten, Activation
|
||||
|
||||
import tensorflow as tf
|
||||
tf_version = int(tf.__version__.split(".")[0])
|
||||
|
||||
if tf_version == 1:
|
||||
from keras.models import Model, Sequential
|
||||
from keras.layers import Convolution2D, Flatten, Activation
|
||||
elif tf_version == 2:
|
||||
from tensorflow.keras.models import Model, Sequential
|
||||
from tensorflow.keras.layers import Convolution2D, Flatten, Activation
|
||||
|
||||
def loadModel():
|
||||
|
||||
|
@ -1,14 +1,21 @@
|
||||
#from basemodels import VGGFace
|
||||
from deepface.basemodels import VGGFace
|
||||
|
||||
import os
|
||||
from pathlib import Path
|
||||
import gdown
|
||||
import numpy as np
|
||||
from keras.models import Model, Sequential
|
||||
from keras.layers import Convolution2D, Flatten, Activation
|
||||
import zipfile
|
||||
|
||||
import tensorflow as tf
|
||||
tf_version = int(tf.__version__.split(".")[0])
|
||||
|
||||
if tf_version == 1:
|
||||
from keras.models import Model, Sequential
|
||||
from keras.layers import Convolution2D, Flatten, Activation
|
||||
elif tf_version == 2:
|
||||
from tensorflow.keras.models import Model, Sequential
|
||||
from tensorflow.keras.layers import Convolution2D, Flatten, Activation
|
||||
|
||||
def loadModel():
|
||||
|
||||
model = VGGFace.baseModel()
|
||||
|
@ -9,3 +9,4 @@ keras>=2.2.0
|
||||
Flask>=1.1.2
|
||||
mtcnn>=0.1.0
|
||||
lightgbm>=2.3.1
|
||||
dlib>=19.20.0
|
@ -1,10 +1,20 @@
|
||||
import warnings
|
||||
warnings.filterwarnings("ignore")
|
||||
|
||||
import os
|
||||
#os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
||||
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
||||
|
||||
from deepface import DeepFace
|
||||
from deepface.commons import functions
|
||||
import json
|
||||
import time
|
||||
|
||||
import os
|
||||
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
||||
import tensorflow as tf
|
||||
|
||||
#-----------------------------------------
|
||||
|
||||
tf_version = int(tf.__version__.split(".")[0])
|
||||
|
||||
#-----------------------------------------
|
||||
|
||||
@ -136,7 +146,8 @@ dataset = [
|
||||
]
|
||||
|
||||
models = ['VGG-Face', 'Facenet', 'OpenFace', 'DeepFace', 'DeepID', 'Dlib']
|
||||
metrics = ['cosine', 'euclidean', 'euclidean_l2']
|
||||
#metrics = ['cosine', 'euclidean', 'euclidean_l2']
|
||||
metrics = ['cosine']
|
||||
|
||||
passed_tests = 0; test_cases = 0
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user