mirror of
https://github.com/serengil/deepface.git
synced 2025-06-07 12:05:22 +00:00
tf 2 compatible
This commit is contained in:
parent
6b25272964
commit
ada31621ac
@ -1,11 +1,12 @@
|
|||||||
import os
|
import os
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
import gdown
|
import gdown
|
||||||
import keras
|
|
||||||
from keras.models import Model
|
|
||||||
from keras.layers import Conv2D, Activation, Input, Add, MaxPooling2D, Flatten, Dense, Dropout
|
|
||||||
import zipfile
|
import zipfile
|
||||||
|
|
||||||
|
from tensorflow import keras
|
||||||
|
from tensorflow.keras.models import Model
|
||||||
|
from tensorflow.keras.layers import Conv2D, Activation, Input, Add, MaxPooling2D, Flatten, Dense, Dropout
|
||||||
|
|
||||||
#-------------------------------------
|
#-------------------------------------
|
||||||
|
|
||||||
def loadModel(url = 'https://drive.google.com/uc?id=1uRLtBCTQQAvHJ_KVrdbRJiCKxU8m5q2J'):
|
def loadModel(url = 'https://drive.google.com/uc?id=1uRLtBCTQQAvHJ_KVrdbRJiCKxU8m5q2J'):
|
||||||
@ -14,15 +15,15 @@ def loadModel(url = 'https://drive.google.com/uc?id=1uRLtBCTQQAvHJ_KVrdbRJiCKxU8
|
|||||||
|
|
||||||
x = Conv2D(20, (4, 4), name='Conv1', activation='relu', input_shape=(55, 47, 3))(myInput)
|
x = Conv2D(20, (4, 4), name='Conv1', activation='relu', input_shape=(55, 47, 3))(myInput)
|
||||||
x = MaxPooling2D(pool_size=2, strides=2, name='Pool1')(x)
|
x = MaxPooling2D(pool_size=2, strides=2, name='Pool1')(x)
|
||||||
x = Dropout(rate=1, name='D1')(x)
|
x = Dropout(rate=0.99, name='D1')(x)
|
||||||
|
|
||||||
x = Conv2D(40, (3, 3), name='Conv2', activation='relu')(x)
|
x = Conv2D(40, (3, 3), name='Conv2', activation='relu')(x)
|
||||||
x = MaxPooling2D(pool_size=2, strides=2, name='Pool2')(x)
|
x = MaxPooling2D(pool_size=2, strides=2, name='Pool2')(x)
|
||||||
x = Dropout(rate=1, name='D2')(x)
|
x = Dropout(rate=0.99, name='D2')(x)
|
||||||
|
|
||||||
x = Conv2D(60, (3, 3), name='Conv3', activation='relu')(x)
|
x = Conv2D(60, (3, 3), name='Conv3', activation='relu')(x)
|
||||||
x = MaxPooling2D(pool_size=2, strides=2, name='Pool3')(x)
|
x = MaxPooling2D(pool_size=2, strides=2, name='Pool3')(x)
|
||||||
x = Dropout(rate=1, name='D3')(x)
|
x = Dropout(rate=0.99, name='D3')(x)
|
||||||
|
|
||||||
x1 = Flatten()(x)
|
x1 = Flatten()(x)
|
||||||
fc11 = Dense(160, name = 'fc11')(x1)
|
fc11 = Dense(160, name = 'fc11')(x1)
|
||||||
|
@ -3,19 +3,19 @@ from pathlib import Path
|
|||||||
import gdown
|
import gdown
|
||||||
from functools import partial
|
from functools import partial
|
||||||
|
|
||||||
from keras.models import Model
|
from tensorflow.keras.models import Model
|
||||||
from keras.layers import Activation
|
from tensorflow.keras.layers import Activation
|
||||||
from keras.layers import BatchNormalization
|
from tensorflow.keras.layers import BatchNormalization
|
||||||
from keras.layers import Concatenate
|
from tensorflow.keras.layers import Concatenate
|
||||||
from keras.layers import Conv2D
|
from tensorflow.keras.layers import Conv2D
|
||||||
from keras.layers import Dense
|
from tensorflow.keras.layers import Dense
|
||||||
from keras.layers import Dropout
|
from tensorflow.keras.layers import Dropout
|
||||||
from keras.layers import GlobalAveragePooling2D
|
from tensorflow.keras.layers import GlobalAveragePooling2D
|
||||||
from keras.layers import Input
|
from tensorflow.keras.layers import Input
|
||||||
from keras.layers import Lambda
|
from tensorflow.keras.layers import Lambda
|
||||||
from keras.layers import MaxPooling2D
|
from tensorflow.keras.layers import MaxPooling2D
|
||||||
from keras.layers import add
|
from tensorflow.keras.layers import add
|
||||||
from keras import backend as K
|
from tensorflow.keras import backend as K
|
||||||
|
|
||||||
def scaling(x, scale):
|
def scaling(x, scale):
|
||||||
return x * scale
|
return x * scale
|
||||||
|
@ -1,11 +1,12 @@
|
|||||||
import os
|
import os
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
import gdown
|
import gdown
|
||||||
import keras
|
|
||||||
from keras.models import Model, Sequential
|
|
||||||
from keras.layers import Convolution2D, LocallyConnected2D, MaxPooling2D, Flatten, Dense, Dropout
|
|
||||||
import zipfile
|
import zipfile
|
||||||
|
|
||||||
|
from tensorflow import keras
|
||||||
|
from tensorflow.keras.models import Model, Sequential
|
||||||
|
from tensorflow.keras.layers import Convolution2D, LocallyConnected2D, MaxPooling2D, Flatten, Dense, Dropout
|
||||||
|
|
||||||
#-------------------------------------
|
#-------------------------------------
|
||||||
|
|
||||||
def loadModel(url = 'https://github.com/swghosh/DeepFace/releases/download/weights-vggface2-2d-aligned/VGGFace2_DeepFace_weights_val-0.9034.h5.zip'):
|
def loadModel(url = 'https://github.com/swghosh/DeepFace/releases/download/weights-vggface2-2d-aligned/VGGFace2_DeepFace_weights_val-0.9034.h5.zip'):
|
||||||
|
@ -3,15 +3,13 @@ from pathlib import Path
|
|||||||
import gdown
|
import gdown
|
||||||
|
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
import keras
|
from tensorflow import keras
|
||||||
from keras.models import Model, Sequential
|
from tensorflow.keras.models import Model, Sequential
|
||||||
from keras.layers import Conv2D, ZeroPadding2D, Activation, Input, concatenate
|
from tensorflow.keras.layers import Conv2D, ZeroPadding2D, Activation, Input, concatenate
|
||||||
from keras.layers.core import Dense, Activation, Lambda, Flatten
|
from tensorflow.keras.layers import Dense, Activation, Lambda, Flatten, BatchNormalization
|
||||||
from keras.layers.pooling import MaxPooling2D, AveragePooling2D
|
from tensorflow.keras.layers import MaxPooling2D, AveragePooling2D
|
||||||
from keras.layers.merge import Concatenate
|
from tensorflow.keras.models import load_model
|
||||||
from keras.layers.normalization import BatchNormalization
|
from tensorflow.keras import backend as K
|
||||||
from keras.models import load_model
|
|
||||||
from keras import backend as K
|
|
||||||
|
|
||||||
#---------------------------------------
|
#---------------------------------------
|
||||||
|
|
||||||
|
@ -1,9 +1,17 @@
|
|||||||
import os
|
import os
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from keras.models import Model, Sequential
|
|
||||||
from keras.layers import Input, Convolution2D, ZeroPadding2D, MaxPooling2D, Flatten, Dense, Dropout, Activation
|
|
||||||
import gdown
|
import gdown
|
||||||
|
|
||||||
|
import tensorflow as tf
|
||||||
|
|
||||||
|
if int(tf.__version__.split(".")[0]) == 1:
|
||||||
|
from keras.models import Model, Sequential
|
||||||
|
from keras.layers import Input, Convolution2D, ZeroPadding2D, MaxPooling2D, Flatten, Dense, Dropout, Activation
|
||||||
|
else:
|
||||||
|
from tensorflow import keras
|
||||||
|
from tensorflow.keras.models import Model, Sequential
|
||||||
|
from tensorflow.keras.layers import Input, Convolution2D, ZeroPadding2D, MaxPooling2D, Flatten, Dense, Dropout, Activation
|
||||||
|
|
||||||
#---------------------------------------
|
#---------------------------------------
|
||||||
|
|
||||||
def baseModel():
|
def baseModel():
|
||||||
|
@ -1,9 +1,6 @@
|
|||||||
import os
|
import os
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
from keras.preprocessing.image import load_img, save_img, img_to_array
|
|
||||||
from keras.applications.imagenet_utils import preprocess_input
|
|
||||||
from keras.preprocessing import image
|
|
||||||
import cv2
|
import cv2
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
import gdown
|
import gdown
|
||||||
@ -14,12 +11,26 @@ import copy
|
|||||||
import base64
|
import base64
|
||||||
import multiprocessing
|
import multiprocessing
|
||||||
import subprocess
|
import subprocess
|
||||||
import tensorflow as tf
|
|
||||||
import keras
|
|
||||||
import bz2
|
import bz2
|
||||||
from deepface.commons import distance
|
from deepface.commons import distance
|
||||||
from mtcnn import MTCNN #0.1.0
|
from mtcnn import MTCNN #0.1.0
|
||||||
|
|
||||||
|
import tensorflow as tf
|
||||||
|
tf_version = int(tf.__version__.split(".")[0])
|
||||||
|
|
||||||
|
if tf_version == 1:
|
||||||
|
import keras
|
||||||
|
from keras.preprocessing.image import load_img, save_img, img_to_array
|
||||||
|
from keras.applications.imagenet_utils import preprocess_input
|
||||||
|
from keras.preprocessing import image
|
||||||
|
elif tf_version == 2:
|
||||||
|
from tensorflow import keras
|
||||||
|
from tensorflow.keras.preprocessing.image import load_img, save_img, img_to_array
|
||||||
|
from tensorflow.keras.applications.imagenet_utils import preprocess_input
|
||||||
|
from tensorflow.keras.preprocessing import image
|
||||||
|
|
||||||
|
#--------------------------------------------------
|
||||||
|
|
||||||
def initialize_input(img1_path, img2_path = None):
|
def initialize_input(img1_path, img2_path = None):
|
||||||
|
|
||||||
if type(img1_path) == list:
|
if type(img1_path) == list:
|
||||||
|
@ -1,12 +1,20 @@
|
|||||||
#from basemodels import VGGFace
|
|
||||||
from deepface.basemodels import VGGFace
|
from deepface.basemodels import VGGFace
|
||||||
|
|
||||||
import os
|
import os
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
import gdown
|
import gdown
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from keras.models import Model, Sequential
|
|
||||||
from keras.layers import Convolution2D, Flatten, Activation
|
import tensorflow as tf
|
||||||
|
tf_version = int(tf.__version__.split(".")[0])
|
||||||
|
|
||||||
|
if tf_version == 1:
|
||||||
|
import keras
|
||||||
|
from keras.models import Model, Sequential
|
||||||
|
from keras.layers import Convolution2D, Flatten, Activation
|
||||||
|
elif tf_version == 2:
|
||||||
|
from tensorflow import keras
|
||||||
|
from tensorflow.keras.models import Model, Sequential
|
||||||
|
from tensorflow.keras.layers import Convolution2D, Flatten, Activation
|
||||||
|
|
||||||
def loadModel():
|
def loadModel():
|
||||||
|
|
||||||
|
@ -1,10 +1,20 @@
|
|||||||
import os
|
import os
|
||||||
import gdown
|
import gdown
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from keras.models import Model, Sequential
|
|
||||||
from keras.layers import Conv2D, MaxPooling2D, AveragePooling2D, Flatten, Dense, Dropout
|
|
||||||
import zipfile
|
import zipfile
|
||||||
|
|
||||||
|
import tensorflow as tf
|
||||||
|
tf_version = int(tf.__version__.split(".")[0])
|
||||||
|
|
||||||
|
if tf_version == 1:
|
||||||
|
import keras
|
||||||
|
from keras.models import Model, Sequential
|
||||||
|
from keras.layers import Conv2D, MaxPooling2D, AveragePooling2D, Flatten, Dense, Dropout
|
||||||
|
elif tf_version == 2:
|
||||||
|
from tensorflow import keras
|
||||||
|
from tensorflow.keras.models import Model, Sequential
|
||||||
|
from tensorflow.keras.layers import Conv2D, MaxPooling2D, AveragePooling2D, Flatten, Dense, Dropout
|
||||||
|
|
||||||
def loadModel():
|
def loadModel():
|
||||||
|
|
||||||
num_classes = 7
|
num_classes = 7
|
||||||
|
@ -1,12 +1,18 @@
|
|||||||
#from basemodels import VGGFace
|
|
||||||
from deepface.basemodels import VGGFace
|
from deepface.basemodels import VGGFace
|
||||||
|
|
||||||
import os
|
import os
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
import gdown
|
import gdown
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from keras.models import Model, Sequential
|
|
||||||
from keras.layers import Convolution2D, Flatten, Activation
|
import tensorflow as tf
|
||||||
|
tf_version = int(tf.__version__.split(".")[0])
|
||||||
|
|
||||||
|
if tf_version == 1:
|
||||||
|
from keras.models import Model, Sequential
|
||||||
|
from keras.layers import Convolution2D, Flatten, Activation
|
||||||
|
elif tf_version == 2:
|
||||||
|
from tensorflow.keras.models import Model, Sequential
|
||||||
|
from tensorflow.keras.layers import Convolution2D, Flatten, Activation
|
||||||
|
|
||||||
def loadModel():
|
def loadModel():
|
||||||
|
|
||||||
|
@ -1,14 +1,21 @@
|
|||||||
#from basemodels import VGGFace
|
|
||||||
from deepface.basemodels import VGGFace
|
from deepface.basemodels import VGGFace
|
||||||
|
|
||||||
import os
|
import os
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
import gdown
|
import gdown
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from keras.models import Model, Sequential
|
|
||||||
from keras.layers import Convolution2D, Flatten, Activation
|
|
||||||
import zipfile
|
import zipfile
|
||||||
|
|
||||||
|
import tensorflow as tf
|
||||||
|
tf_version = int(tf.__version__.split(".")[0])
|
||||||
|
|
||||||
|
if tf_version == 1:
|
||||||
|
from keras.models import Model, Sequential
|
||||||
|
from keras.layers import Convolution2D, Flatten, Activation
|
||||||
|
elif tf_version == 2:
|
||||||
|
from tensorflow.keras.models import Model, Sequential
|
||||||
|
from tensorflow.keras.layers import Convolution2D, Flatten, Activation
|
||||||
|
|
||||||
def loadModel():
|
def loadModel():
|
||||||
|
|
||||||
model = VGGFace.baseModel()
|
model = VGGFace.baseModel()
|
||||||
|
@ -9,3 +9,4 @@ keras>=2.2.0
|
|||||||
Flask>=1.1.2
|
Flask>=1.1.2
|
||||||
mtcnn>=0.1.0
|
mtcnn>=0.1.0
|
||||||
lightgbm>=2.3.1
|
lightgbm>=2.3.1
|
||||||
|
dlib>=19.20.0
|
@ -1,10 +1,20 @@
|
|||||||
|
import warnings
|
||||||
|
warnings.filterwarnings("ignore")
|
||||||
|
|
||||||
|
import os
|
||||||
|
#os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
||||||
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
||||||
|
|
||||||
from deepface import DeepFace
|
from deepface import DeepFace
|
||||||
from deepface.commons import functions
|
from deepface.commons import functions
|
||||||
import json
|
import json
|
||||||
import time
|
import time
|
||||||
|
|
||||||
import os
|
import tensorflow as tf
|
||||||
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
|
||||||
|
#-----------------------------------------
|
||||||
|
|
||||||
|
tf_version = int(tf.__version__.split(".")[0])
|
||||||
|
|
||||||
#-----------------------------------------
|
#-----------------------------------------
|
||||||
|
|
||||||
@ -136,7 +146,8 @@ dataset = [
|
|||||||
]
|
]
|
||||||
|
|
||||||
models = ['VGG-Face', 'Facenet', 'OpenFace', 'DeepFace', 'DeepID', 'Dlib']
|
models = ['VGG-Face', 'Facenet', 'OpenFace', 'DeepFace', 'DeepID', 'Dlib']
|
||||||
metrics = ['cosine', 'euclidean', 'euclidean_l2']
|
#metrics = ['cosine', 'euclidean', 'euclidean_l2']
|
||||||
|
metrics = ['cosine']
|
||||||
|
|
||||||
passed_tests = 0; test_cases = 0
|
passed_tests = 0; test_cases = 0
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user