mirror of
https://github.com/serengil/deepface.git
synced 2025-06-08 12:35:22 +00:00
Add files via upload
This commit is contained in:
parent
97d0a7d1df
commit
ae10f5a352
77
deepface/detectors/MediapipeWrapper.py
Normal file
77
deepface/detectors/MediapipeWrapper.py
Normal file
@ -0,0 +1,77 @@
|
|||||||
|
|
||||||
|
from deepface.detectors import FaceDetector
|
||||||
|
|
||||||
|
|
||||||
|
# Link - https://google.github.io/mediapipe/solutions/face_detection
|
||||||
|
|
||||||
|
def build_model():
|
||||||
|
import mediapipe as mp
|
||||||
|
mp_face_detection = mp.solutions.face_detection
|
||||||
|
# Build a face detector
|
||||||
|
# min_detection_confidence - "A filter to analyse the training photographs"
|
||||||
|
face_detection = mp_face_detection.FaceDetection( min_detection_confidence=0.6)
|
||||||
|
return face_detection
|
||||||
|
|
||||||
|
def detect_face(face_detector, img, align=True):
|
||||||
|
import mediapipe as mp
|
||||||
|
import re
|
||||||
|
#mp_face_detection = mp.solutions.face_detection
|
||||||
|
#mp_drawing = mp.solutions.drawing_utils
|
||||||
|
resp = []
|
||||||
|
results = face_detector.process(img)
|
||||||
|
original_size = img.shape
|
||||||
|
target_size = (300, 300)
|
||||||
|
# First face , than eye
|
||||||
|
#print(results.detections)
|
||||||
|
if results.detections:
|
||||||
|
for detection in results.detections:
|
||||||
|
#mp_drawing.draw_detection(img, detection)
|
||||||
|
#print(detection)
|
||||||
|
# detected_face is the cropped image that is then passed forward to the Regognizer
|
||||||
|
'''
|
||||||
|
DETECTION -
|
||||||
|
Collection of detected faces, where each face is represented as a detection proto message that contains
|
||||||
|
a bounding box and 6 key points (right eye, left eye, nose tip, mouth center, right ear tragion, and left
|
||||||
|
ear tragion). The bounding box is composed of xmin and width (both normalized to [0.0, 1.0] by the
|
||||||
|
image width) and ymin and height (both normalized to [0.0, 1.0] by the image height). Each key point
|
||||||
|
is composed of x and y, which are normalized to [0.0, 1.0] by the image width and height
|
||||||
|
respectively.
|
||||||
|
'''
|
||||||
|
# Bounding Box
|
||||||
|
x = re.findall('xmin: (..*)',str(detection))
|
||||||
|
y = re.findall('ymin: (..*)',str(detection))
|
||||||
|
h = re.findall('height: (..*)',str(detection))
|
||||||
|
w = re.findall('width: (..*)',str(detection))
|
||||||
|
# Eye Locations
|
||||||
|
reye_x = re.findall('x: (..*)',str(detection))[0]
|
||||||
|
leye_x = re.findall('x: (..*)',str(detection))[1]
|
||||||
|
reye_y = re.findall('y: (..*)', str(detection))[0]
|
||||||
|
leye_y = re.findall('y: (..*)', str(detection))[1]
|
||||||
|
# Detections are normalized by the mediapipe API, thus they need to be multiplied
|
||||||
|
# Extra tweaking done to improve accuracy
|
||||||
|
x = (float(x[0]) * original_size[1])
|
||||||
|
y = (float(y[0]) * original_size[0]-15)
|
||||||
|
h = (float(h[0]) * original_size[0]+10)
|
||||||
|
w = (float(w[0]) * original_size[1]+10)
|
||||||
|
reye_x = (float(reye_x) * original_size[1])
|
||||||
|
leye_x = (float(leye_x) * original_size[1])
|
||||||
|
reye_y = (float(reye_y) * original_size[0])
|
||||||
|
leye_y = (float(leye_y) * original_size[0])
|
||||||
|
if float(x) and float(y) > 0:
|
||||||
|
detected_face = img[int(y):int(y + h), int(x):int(x + w)]
|
||||||
|
img_region = [int(x), int(y), int(w), int(h)]
|
||||||
|
if align:
|
||||||
|
left_eye=(leye_x,leye_y)
|
||||||
|
right_eye=(reye_x,reye_y)
|
||||||
|
print(left_eye)
|
||||||
|
print(right_eye)
|
||||||
|
detected_face = FaceDetector.alignment_procedure(detected_face, left_eye, right_eye)
|
||||||
|
resp.append((detected_face,img_region))
|
||||||
|
else:
|
||||||
|
continue
|
||||||
|
|
||||||
|
#print("Yahoo")
|
||||||
|
return resp
|
||||||
|
|
||||||
|
|
||||||
|
#face_detector = FaceDetector.build_model('mediapipe')
|
Loading…
x
Reference in New Issue
Block a user