diff --git a/README.md b/README.md index 56527bc..17bc46d 100644 --- a/README.md +++ b/README.md @@ -102,10 +102,14 @@ models = [ ] #face verification -result = DeepFace.verify(img1_path = "img1.jpg", img2_path = "img2.jpg", model_name = models[1]) +result = DeepFace.verify(img1_path = "img1.jpg", + img2_path = "img2.jpg", + model_name = models[1]) #face recognition -df = DeepFace.find(img_path = "img1.jpg", db_path = "C:/workspace/my_db", model_name = models[1]) +df = DeepFace.find(img_path = "img1.jpg", + db_path = "C:/workspace/my_db", + model_name = models[1]) #embeddings embedding = DeepFace.represent(img_path = "img.jpg", model_name = models[1]) @@ -137,10 +141,14 @@ Similarity could be calculated by different metrics such as [Cosine Similarity]( metrics = ["cosine", "euclidean", "euclidean_l2"] #face verification -result = DeepFace.verify(img1_path = "img1.jpg", img2_path = "img2.jpg", distance_metric = metrics[1]) +result = DeepFace.verify(img1_path = "img1.jpg", + img2_path = "img2.jpg", + distance_metric = metrics[1]) #face recognition -df = DeepFace.find(img_path = "img1.jpg", db_path = "C:/workspace/my_db", distance_metric = metrics[1]) +df = DeepFace.find(img_path = "img1.jpg", + db_path = "C:/workspace/my_db", + distance_metric = metrics[1]) ``` Euclidean L2 form [seems](https://youtu.be/i_MOwvhbLdI) to be more stable than cosine and regular Euclidean distance based on experiments. @@ -150,7 +158,8 @@ Euclidean L2 form [seems](https://youtu.be/i_MOwvhbLdI) to be more stable than c Deepface also comes with a strong facial attribute analysis module including [`age`](https://sefiks.com/2019/02/13/apparent-age-and-gender-prediction-in-keras/), [`gender`](https://sefiks.com/2019/02/13/apparent-age-and-gender-prediction-in-keras/), [`facial expression`](https://sefiks.com/2018/01/01/facial-expression-recognition-with-keras/) (including angry, fear, neutral, sad, disgust, happy and surprise) and [`race`](https://sefiks.com/2019/11/11/race-and-ethnicity-prediction-in-keras/) (including asian, white, middle eastern, indian, latino and black) predictions. ```python -obj = DeepFace.analyze(img_path = "img4.jpg", actions = ['age', 'gender', 'race', 'emotion']) +obj = DeepFace.analyze(img_path = "img4.jpg", + actions = ['age', 'gender', 'race', 'emotion']) ```