mirror of
https://github.com/serengil/deepface.git
synced 2025-06-07 20:15:21 +00:00
image utils
This commit is contained in:
parent
cd36b13dde
commit
b345b1dfdf
@ -1,9 +1,10 @@
|
|||||||
# built-in dependencies
|
# built-in dependencies
|
||||||
import os
|
import os
|
||||||
import io
|
import io
|
||||||
from typing import List
|
from typing import List, Union, Tuple
|
||||||
import hashlib
|
import hashlib
|
||||||
import base64
|
import base64
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
# 3rd party dependencies
|
# 3rd party dependencies
|
||||||
import requests
|
import requests
|
||||||
@ -37,7 +38,7 @@ def list_images(path: str) -> List[str]:
|
|||||||
return images
|
return images
|
||||||
|
|
||||||
|
|
||||||
def find_hash_of_file(file_path: str) -> str:
|
def find_image_hash(file_path: str) -> str:
|
||||||
"""
|
"""
|
||||||
Find the hash of given image file with its properties
|
Find the hash of given image file with its properties
|
||||||
finding the hash of image content is costly operation
|
finding the hash of image content is costly operation
|
||||||
@ -60,7 +61,50 @@ def find_hash_of_file(file_path: str) -> str:
|
|||||||
return hasher.hexdigest()
|
return hasher.hexdigest()
|
||||||
|
|
||||||
|
|
||||||
def load_base64(uri: str) -> np.ndarray:
|
def load_image(img: Union[str, np.ndarray]) -> Tuple[np.ndarray, str]:
|
||||||
|
"""
|
||||||
|
Load image from path, url, base64 or numpy array.
|
||||||
|
Args:
|
||||||
|
img: a path, url, base64 or numpy array.
|
||||||
|
Returns:
|
||||||
|
image (numpy array): the loaded image in BGR format
|
||||||
|
image name (str): image name itself
|
||||||
|
"""
|
||||||
|
|
||||||
|
# The image is already a numpy array
|
||||||
|
if isinstance(img, np.ndarray):
|
||||||
|
return img, "numpy array"
|
||||||
|
|
||||||
|
if isinstance(img, Path):
|
||||||
|
img = str(img)
|
||||||
|
|
||||||
|
if not isinstance(img, str):
|
||||||
|
raise ValueError(f"img must be numpy array or str but it is {type(img)}")
|
||||||
|
|
||||||
|
# The image is a base64 string
|
||||||
|
if img.startswith("data:image/"):
|
||||||
|
return load_image_from_base64(img), "base64 encoded string"
|
||||||
|
|
||||||
|
# The image is a url
|
||||||
|
if img.lower().startswith("http://") or img.lower().startswith("https://"):
|
||||||
|
return load_image_from_web(url=img), img
|
||||||
|
|
||||||
|
# The image is a path
|
||||||
|
if os.path.isfile(img) is not True:
|
||||||
|
raise ValueError(f"Confirm that {img} exists")
|
||||||
|
|
||||||
|
# image must be a file on the system then
|
||||||
|
|
||||||
|
# image name must have english characters
|
||||||
|
if img.isascii() is False:
|
||||||
|
raise ValueError(f"Input image must not have non-english characters - {img}")
|
||||||
|
|
||||||
|
img_obj_bgr = cv2.imread(img)
|
||||||
|
# img_obj_rgb = cv2.cvtColor(img_obj_bgr, cv2.COLOR_BGR2RGB)
|
||||||
|
return img_obj_bgr, img
|
||||||
|
|
||||||
|
|
||||||
|
def load_image_from_base64(uri: str) -> np.ndarray:
|
||||||
"""
|
"""
|
||||||
Load image from base64 string.
|
Load image from base64 string.
|
||||||
Args:
|
Args:
|
@ -7,9 +7,9 @@ import cv2
|
|||||||
from PIL import Image
|
from PIL import Image
|
||||||
|
|
||||||
# project dependencies
|
# project dependencies
|
||||||
from deepface.modules import preprocessing
|
|
||||||
from deepface.models.Detector import DetectedFace, FacialAreaRegion
|
from deepface.models.Detector import DetectedFace, FacialAreaRegion
|
||||||
from deepface.detectors import DetectorWrapper
|
from deepface.detectors import DetectorWrapper
|
||||||
|
from deepface.commons import image_utils
|
||||||
from deepface.commons import logger as log
|
from deepface.commons import logger as log
|
||||||
|
|
||||||
logger = log.get_singletonish_logger()
|
logger = log.get_singletonish_logger()
|
||||||
@ -63,7 +63,7 @@ def extract_faces(
|
|||||||
resp_objs = []
|
resp_objs = []
|
||||||
|
|
||||||
# img might be path, base64 or numpy array. Convert it to numpy whatever it is.
|
# img might be path, base64 or numpy array. Convert it to numpy whatever it is.
|
||||||
img, img_name = preprocessing.load_image(img_path)
|
img, img_name = image_utils.load_image(img_path)
|
||||||
|
|
||||||
if img is None:
|
if img is None:
|
||||||
raise ValueError(f"Exception while loading {img_name}")
|
raise ValueError(f"Exception while loading {img_name}")
|
||||||
|
@ -1,14 +1,12 @@
|
|||||||
# built-in dependencies
|
# built-in dependencies
|
||||||
import os
|
from typing import Tuple
|
||||||
from typing import Union, Tuple
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
# 3rd party
|
# 3rd party
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import cv2
|
import cv2
|
||||||
|
|
||||||
# project dependencies
|
# project dependencies
|
||||||
from deepface.commons import package_utils, file_utils
|
from deepface.commons import package_utils
|
||||||
|
|
||||||
|
|
||||||
tf_major_version = package_utils.get_tf_major_version()
|
tf_major_version = package_utils.get_tf_major_version()
|
||||||
@ -18,49 +16,6 @@ elif tf_major_version == 2:
|
|||||||
from tensorflow.keras.preprocessing import image
|
from tensorflow.keras.preprocessing import image
|
||||||
|
|
||||||
|
|
||||||
def load_image(img: Union[str, np.ndarray]) -> Tuple[np.ndarray, str]:
|
|
||||||
"""
|
|
||||||
Load image from path, url, base64 or numpy array.
|
|
||||||
Args:
|
|
||||||
img: a path, url, base64 or numpy array.
|
|
||||||
Returns:
|
|
||||||
image (numpy array): the loaded image in BGR format
|
|
||||||
image name (str): image name itself
|
|
||||||
"""
|
|
||||||
|
|
||||||
# The image is already a numpy array
|
|
||||||
if isinstance(img, np.ndarray):
|
|
||||||
return img, "numpy array"
|
|
||||||
|
|
||||||
if isinstance(img, Path):
|
|
||||||
img = str(img)
|
|
||||||
|
|
||||||
if not isinstance(img, str):
|
|
||||||
raise ValueError(f"img must be numpy array or str but it is {type(img)}")
|
|
||||||
|
|
||||||
# The image is a base64 string
|
|
||||||
if img.startswith("data:image/"):
|
|
||||||
return file_utils.load_base64(img), "base64 encoded string"
|
|
||||||
|
|
||||||
# The image is a url
|
|
||||||
if img.lower().startswith("http://") or img.lower().startswith("https://"):
|
|
||||||
return file_utils.load_image_from_web(url=img), img
|
|
||||||
|
|
||||||
# The image is a path
|
|
||||||
if os.path.isfile(img) is not True:
|
|
||||||
raise ValueError(f"Confirm that {img} exists")
|
|
||||||
|
|
||||||
# image must be a file on the system then
|
|
||||||
|
|
||||||
# image name must have english characters
|
|
||||||
if img.isascii() is False:
|
|
||||||
raise ValueError(f"Input image must not have non-english characters - {img}")
|
|
||||||
|
|
||||||
img_obj_bgr = cv2.imread(img)
|
|
||||||
# img_obj_rgb = cv2.cvtColor(img_obj_bgr, cv2.COLOR_BGR2RGB)
|
|
||||||
return img_obj_bgr, img
|
|
||||||
|
|
||||||
|
|
||||||
def normalize_input(img: np.ndarray, normalization: str = "base") -> np.ndarray:
|
def normalize_input(img: np.ndarray, normalization: str = "base") -> np.ndarray:
|
||||||
"""Normalize input image.
|
"""Normalize input image.
|
||||||
|
|
||||||
|
@ -10,7 +10,7 @@ import pandas as pd
|
|||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
|
||||||
# project dependencies
|
# project dependencies
|
||||||
from deepface.commons import file_utils
|
from deepface.commons import image_utils
|
||||||
from deepface.modules import representation, detection, verification
|
from deepface.modules import representation, detection, verification
|
||||||
from deepface.commons import logger as log
|
from deepface.commons import logger as log
|
||||||
|
|
||||||
@ -143,7 +143,7 @@ def find(
|
|||||||
pickled_images = [representation["identity"] for representation in representations]
|
pickled_images = [representation["identity"] for representation in representations]
|
||||||
|
|
||||||
# Get the list of images on storage
|
# Get the list of images on storage
|
||||||
storage_images = file_utils.list_images(path=db_path)
|
storage_images = image_utils.list_images(path=db_path)
|
||||||
|
|
||||||
if len(storage_images) == 0:
|
if len(storage_images) == 0:
|
||||||
raise ValueError(f"No item found in {db_path}")
|
raise ValueError(f"No item found in {db_path}")
|
||||||
@ -160,7 +160,7 @@ def find(
|
|||||||
if identity in old_images:
|
if identity in old_images:
|
||||||
continue
|
continue
|
||||||
alpha_hash = current_representation["hash"]
|
alpha_hash = current_representation["hash"]
|
||||||
beta_hash = file_utils.find_hash_of_file(identity)
|
beta_hash = image_utils.find_image_hash(identity)
|
||||||
if alpha_hash != beta_hash:
|
if alpha_hash != beta_hash:
|
||||||
logger.debug(f"Even though {identity} represented before, it's replaced later.")
|
logger.debug(f"Even though {identity} represented before, it's replaced later.")
|
||||||
replaced_images.append(identity)
|
replaced_images.append(identity)
|
||||||
@ -334,7 +334,7 @@ def __find_bulk_embeddings(
|
|||||||
desc="Finding representations",
|
desc="Finding representations",
|
||||||
disable=silent,
|
disable=silent,
|
||||||
):
|
):
|
||||||
file_hash = file_utils.find_hash_of_file(employee)
|
file_hash = image_utils.find_image_hash(employee)
|
||||||
|
|
||||||
try:
|
try:
|
||||||
img_objs = detection.extract_faces(
|
img_objs = detection.extract_faces(
|
||||||
|
@ -5,6 +5,7 @@ from typing import Any, Dict, List, Union
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
# project dependencies
|
# project dependencies
|
||||||
|
from deepface.commons import image_utils
|
||||||
from deepface.modules import modeling, detection, preprocessing
|
from deepface.modules import modeling, detection, preprocessing
|
||||||
from deepface.models.FacialRecognition import FacialRecognition
|
from deepface.models.FacialRecognition import FacialRecognition
|
||||||
|
|
||||||
@ -74,7 +75,7 @@ def represent(
|
|||||||
)
|
)
|
||||||
else: # skip
|
else: # skip
|
||||||
# Try load. If load error, will raise exception internal
|
# Try load. If load error, will raise exception internal
|
||||||
img, _ = preprocessing.load_image(img_path)
|
img, _ = image_utils.load_image(img_path)
|
||||||
|
|
||||||
if len(img.shape) != 3:
|
if len(img.shape) != 3:
|
||||||
raise ValueError(f"Input img must be 3 dimensional but it is {img.shape}")
|
raise ValueError(f"Input img must be 3 dimensional but it is {img.shape}")
|
||||||
|
@ -8,8 +8,7 @@ import pandas as pd
|
|||||||
# project dependencies
|
# project dependencies
|
||||||
from deepface import DeepFace
|
from deepface import DeepFace
|
||||||
from deepface.modules import verification
|
from deepface.modules import verification
|
||||||
from deepface.modules import recognition
|
from deepface.commons import image_utils
|
||||||
from deepface.commons import file_utils
|
|
||||||
from deepface.commons import logger as log
|
from deepface.commons import logger as log
|
||||||
|
|
||||||
logger = log.get_singletonish_logger()
|
logger = log.get_singletonish_logger()
|
||||||
@ -96,7 +95,7 @@ def test_filetype_for_find():
|
|||||||
|
|
||||||
|
|
||||||
def test_filetype_for_find_bulk_embeddings():
|
def test_filetype_for_find_bulk_embeddings():
|
||||||
imgs = file_utils.list_images("dataset")
|
imgs = image_utils.list_images("dataset")
|
||||||
|
|
||||||
assert len(imgs) > 0
|
assert len(imgs) > 0
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user