mirror of
https://github.com/serengil/deepface.git
synced 2025-06-07 12:05:22 +00:00
image utils
This commit is contained in:
parent
cd36b13dde
commit
b345b1dfdf
@ -1,9 +1,10 @@
|
||||
# built-in dependencies
|
||||
import os
|
||||
import io
|
||||
from typing import List
|
||||
from typing import List, Union, Tuple
|
||||
import hashlib
|
||||
import base64
|
||||
from pathlib import Path
|
||||
|
||||
# 3rd party dependencies
|
||||
import requests
|
||||
@ -37,7 +38,7 @@ def list_images(path: str) -> List[str]:
|
||||
return images
|
||||
|
||||
|
||||
def find_hash_of_file(file_path: str) -> str:
|
||||
def find_image_hash(file_path: str) -> str:
|
||||
"""
|
||||
Find the hash of given image file with its properties
|
||||
finding the hash of image content is costly operation
|
||||
@ -60,7 +61,50 @@ def find_hash_of_file(file_path: str) -> str:
|
||||
return hasher.hexdigest()
|
||||
|
||||
|
||||
def load_base64(uri: str) -> np.ndarray:
|
||||
def load_image(img: Union[str, np.ndarray]) -> Tuple[np.ndarray, str]:
|
||||
"""
|
||||
Load image from path, url, base64 or numpy array.
|
||||
Args:
|
||||
img: a path, url, base64 or numpy array.
|
||||
Returns:
|
||||
image (numpy array): the loaded image in BGR format
|
||||
image name (str): image name itself
|
||||
"""
|
||||
|
||||
# The image is already a numpy array
|
||||
if isinstance(img, np.ndarray):
|
||||
return img, "numpy array"
|
||||
|
||||
if isinstance(img, Path):
|
||||
img = str(img)
|
||||
|
||||
if not isinstance(img, str):
|
||||
raise ValueError(f"img must be numpy array or str but it is {type(img)}")
|
||||
|
||||
# The image is a base64 string
|
||||
if img.startswith("data:image/"):
|
||||
return load_image_from_base64(img), "base64 encoded string"
|
||||
|
||||
# The image is a url
|
||||
if img.lower().startswith("http://") or img.lower().startswith("https://"):
|
||||
return load_image_from_web(url=img), img
|
||||
|
||||
# The image is a path
|
||||
if os.path.isfile(img) is not True:
|
||||
raise ValueError(f"Confirm that {img} exists")
|
||||
|
||||
# image must be a file on the system then
|
||||
|
||||
# image name must have english characters
|
||||
if img.isascii() is False:
|
||||
raise ValueError(f"Input image must not have non-english characters - {img}")
|
||||
|
||||
img_obj_bgr = cv2.imread(img)
|
||||
# img_obj_rgb = cv2.cvtColor(img_obj_bgr, cv2.COLOR_BGR2RGB)
|
||||
return img_obj_bgr, img
|
||||
|
||||
|
||||
def load_image_from_base64(uri: str) -> np.ndarray:
|
||||
"""
|
||||
Load image from base64 string.
|
||||
Args:
|
@ -7,9 +7,9 @@ import cv2
|
||||
from PIL import Image
|
||||
|
||||
# project dependencies
|
||||
from deepface.modules import preprocessing
|
||||
from deepface.models.Detector import DetectedFace, FacialAreaRegion
|
||||
from deepface.detectors import DetectorWrapper
|
||||
from deepface.commons import image_utils
|
||||
from deepface.commons import logger as log
|
||||
|
||||
logger = log.get_singletonish_logger()
|
||||
@ -63,7 +63,7 @@ def extract_faces(
|
||||
resp_objs = []
|
||||
|
||||
# img might be path, base64 or numpy array. Convert it to numpy whatever it is.
|
||||
img, img_name = preprocessing.load_image(img_path)
|
||||
img, img_name = image_utils.load_image(img_path)
|
||||
|
||||
if img is None:
|
||||
raise ValueError(f"Exception while loading {img_name}")
|
||||
|
@ -1,14 +1,12 @@
|
||||
# built-in dependencies
|
||||
import os
|
||||
from typing import Union, Tuple
|
||||
from pathlib import Path
|
||||
from typing import Tuple
|
||||
|
||||
# 3rd party
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
# project dependencies
|
||||
from deepface.commons import package_utils, file_utils
|
||||
from deepface.commons import package_utils
|
||||
|
||||
|
||||
tf_major_version = package_utils.get_tf_major_version()
|
||||
@ -18,49 +16,6 @@ elif tf_major_version == 2:
|
||||
from tensorflow.keras.preprocessing import image
|
||||
|
||||
|
||||
def load_image(img: Union[str, np.ndarray]) -> Tuple[np.ndarray, str]:
|
||||
"""
|
||||
Load image from path, url, base64 or numpy array.
|
||||
Args:
|
||||
img: a path, url, base64 or numpy array.
|
||||
Returns:
|
||||
image (numpy array): the loaded image in BGR format
|
||||
image name (str): image name itself
|
||||
"""
|
||||
|
||||
# The image is already a numpy array
|
||||
if isinstance(img, np.ndarray):
|
||||
return img, "numpy array"
|
||||
|
||||
if isinstance(img, Path):
|
||||
img = str(img)
|
||||
|
||||
if not isinstance(img, str):
|
||||
raise ValueError(f"img must be numpy array or str but it is {type(img)}")
|
||||
|
||||
# The image is a base64 string
|
||||
if img.startswith("data:image/"):
|
||||
return file_utils.load_base64(img), "base64 encoded string"
|
||||
|
||||
# The image is a url
|
||||
if img.lower().startswith("http://") or img.lower().startswith("https://"):
|
||||
return file_utils.load_image_from_web(url=img), img
|
||||
|
||||
# The image is a path
|
||||
if os.path.isfile(img) is not True:
|
||||
raise ValueError(f"Confirm that {img} exists")
|
||||
|
||||
# image must be a file on the system then
|
||||
|
||||
# image name must have english characters
|
||||
if img.isascii() is False:
|
||||
raise ValueError(f"Input image must not have non-english characters - {img}")
|
||||
|
||||
img_obj_bgr = cv2.imread(img)
|
||||
# img_obj_rgb = cv2.cvtColor(img_obj_bgr, cv2.COLOR_BGR2RGB)
|
||||
return img_obj_bgr, img
|
||||
|
||||
|
||||
def normalize_input(img: np.ndarray, normalization: str = "base") -> np.ndarray:
|
||||
"""Normalize input image.
|
||||
|
||||
|
@ -10,7 +10,7 @@ import pandas as pd
|
||||
from tqdm import tqdm
|
||||
|
||||
# project dependencies
|
||||
from deepface.commons import file_utils
|
||||
from deepface.commons import image_utils
|
||||
from deepface.modules import representation, detection, verification
|
||||
from deepface.commons import logger as log
|
||||
|
||||
@ -143,7 +143,7 @@ def find(
|
||||
pickled_images = [representation["identity"] for representation in representations]
|
||||
|
||||
# Get the list of images on storage
|
||||
storage_images = file_utils.list_images(path=db_path)
|
||||
storage_images = image_utils.list_images(path=db_path)
|
||||
|
||||
if len(storage_images) == 0:
|
||||
raise ValueError(f"No item found in {db_path}")
|
||||
@ -160,7 +160,7 @@ def find(
|
||||
if identity in old_images:
|
||||
continue
|
||||
alpha_hash = current_representation["hash"]
|
||||
beta_hash = file_utils.find_hash_of_file(identity)
|
||||
beta_hash = image_utils.find_image_hash(identity)
|
||||
if alpha_hash != beta_hash:
|
||||
logger.debug(f"Even though {identity} represented before, it's replaced later.")
|
||||
replaced_images.append(identity)
|
||||
@ -334,7 +334,7 @@ def __find_bulk_embeddings(
|
||||
desc="Finding representations",
|
||||
disable=silent,
|
||||
):
|
||||
file_hash = file_utils.find_hash_of_file(employee)
|
||||
file_hash = image_utils.find_image_hash(employee)
|
||||
|
||||
try:
|
||||
img_objs = detection.extract_faces(
|
||||
|
@ -5,6 +5,7 @@ from typing import Any, Dict, List, Union
|
||||
import numpy as np
|
||||
|
||||
# project dependencies
|
||||
from deepface.commons import image_utils
|
||||
from deepface.modules import modeling, detection, preprocessing
|
||||
from deepface.models.FacialRecognition import FacialRecognition
|
||||
|
||||
@ -74,7 +75,7 @@ def represent(
|
||||
)
|
||||
else: # skip
|
||||
# Try load. If load error, will raise exception internal
|
||||
img, _ = preprocessing.load_image(img_path)
|
||||
img, _ = image_utils.load_image(img_path)
|
||||
|
||||
if len(img.shape) != 3:
|
||||
raise ValueError(f"Input img must be 3 dimensional but it is {img.shape}")
|
||||
|
@ -8,8 +8,7 @@ import pandas as pd
|
||||
# project dependencies
|
||||
from deepface import DeepFace
|
||||
from deepface.modules import verification
|
||||
from deepface.modules import recognition
|
||||
from deepface.commons import file_utils
|
||||
from deepface.commons import image_utils
|
||||
from deepface.commons import logger as log
|
||||
|
||||
logger = log.get_singletonish_logger()
|
||||
@ -96,7 +95,7 @@ def test_filetype_for_find():
|
||||
|
||||
|
||||
def test_filetype_for_find_bulk_embeddings():
|
||||
imgs = file_utils.list_images("dataset")
|
||||
imgs = image_utils.list_images("dataset")
|
||||
|
||||
assert len(imgs) > 0
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user