Add YOLOv8n-face, with confidence

This commit is contained in:
Vincent STRAGIER 2023-05-23 19:18:38 +02:00
parent e643f56b75
commit b452bd26ac
3 changed files with 58 additions and 14 deletions

View File

@ -9,11 +9,11 @@ from deepface.detectors import (
MtcnnWrapper,
RetinaFaceWrapper,
MediapipeWrapper,
Yolov8nfaceWrapper,
)
def build_model(detector_backend):
global face_detector_obj # singleton design pattern
backends = {
@ -23,6 +23,7 @@ def build_model(detector_backend):
"mtcnn": MtcnnWrapper.build_model,
"retinaface": RetinaFaceWrapper.build_model,
"mediapipe": MediapipeWrapper.build_model,
"yolov8n-face": Yolov8nfaceWrapper.build_model,
}
if not "face_detector_obj" in globals():
@ -42,7 +43,6 @@ def build_model(detector_backend):
def detect_face(face_detector, detector_backend, img, align=True):
obj = detect_faces(face_detector, detector_backend, img, align)
if len(obj) > 0:
@ -50,12 +50,12 @@ def detect_face(face_detector, detector_backend, img, align=True):
else: # len(obj) == 0
face = None
region = [0, 0, img.shape[1], img.shape[0]]
confidence = 0
return face, region, confidence
def detect_faces(face_detector, detector_backend, img, align=True):
backends = {
"opencv": OpenCvWrapper.detect_face,
"ssd": SsdWrapper.detect_face,
@ -63,6 +63,7 @@ def detect_faces(face_detector, detector_backend, img, align=True):
"mtcnn": MtcnnWrapper.detect_face,
"retinaface": RetinaFaceWrapper.detect_face,
"mediapipe": MediapipeWrapper.detect_face,
"yolov8n-face": Yolov8nfaceWrapper.detect_face,
}
detect_face_fn = backends.get(detector_backend)
@ -76,7 +77,6 @@ def detect_faces(face_detector, detector_backend, img, align=True):
def alignment_procedure(img, left_eye, right_eye):
# this function aligns given face in img based on left and right eye coordinates
left_eye_x, left_eye_y = left_eye
@ -104,7 +104,6 @@ def alignment_procedure(img, left_eye, right_eye):
# apply cosine rule
if b != 0 and c != 0: # this multiplication causes division by zero in cos_a calculation
cos_a = (b * b + c * c - a * a) / (2 * b * c)
angle = np.arccos(cos_a) # angle in radian
angle = (angle * 180) / math.pi # radian to degree

View File

@ -45,6 +45,7 @@ def detect_face(detector, img, align=True):
img_region = [0, 0, img.shape[1], img.shape[0]]
faces = []
scores = []
try:
# faces = detector["face_detector"].detectMultiScale(img, 1.3, 5)
@ -52,19 +53,21 @@ def detect_face(detector, img, align=True):
faces, _, scores = detector["face_detector"].detectMultiScale3(
img, 1.1, 10, outputRejectLevels=True
)
except:
pass
except Exception: # pylint: disable=broad-except
# except alone is too broad and will catch keyboard interrupts
import traceback
if len(faces) > 0:
for (x, y, w, h), confidence in zip(faces, scores):
detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
print(traceback.format_exc())
if align:
detected_face = align_face(detector["eye_detector"], detected_face)
for (x, y, w, h), confidence in zip(faces, scores):
detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
img_region = [x, y, w, h]
if align:
detected_face = align_face(detector["eye_detector"], detected_face)
resp.append((detected_face, img_region, confidence))
img_region = [x, y, w, h]
resp.append((detected_face, img_region, confidence))
return resp

View File

@ -0,0 +1,42 @@
def build_model():
import gdown
import os
from ultralytics import YOLO
from deepface.commons.functions import get_deepface_home
weights_path = f"{get_deepface_home()}/.deepface/weights/yolov8n-face.pt"
if not os.path.isfile(weights_path):
url = "https://drive.google.com/uc?id=1qcr9DbgsX3ryrz2uU8w4Xm3cOrRywXqb"
gdown.download(url, weights_path, quiet=False)
print("Downloaded YOLO model yolo8vn-face.pt")
# return face_detector
return YOLO(weights_path)
def detect_face(face_detector, img, align=False):
resp = []
confidence = -1
detected_face = None
# if align:
# raise NotImplementedError("`align` is not implemented for Yolov8Wrapper")
results = face_detector.predict(img, verbose=False, show=True, conf=0.25)[0]
for result in results:
x, y, w, h = result.boxes.xywh.tolist()[0]
confidence = result.boxes.conf.tolist()[0]
# print(f"Confidence: {confidence}, x: {x}, y: {y}, w: {w}, h: {h}")
# print landmarks
print(result.keypoints.tolist())
# change to top left corner, width, height
x, y, w, h = int(x - w / 2), int(y - h / 2), int(w), int(h)
detected_face = img[y : y + h, x : x + w].copy()
resp.append((detected_face, [x, y, w, h], confidence))
return resp