handling many faces

This commit is contained in:
Sefik Ilkin Serengil 2023-01-23 21:54:52 +00:00
parent ba3db18671
commit b62e3671f8
6 changed files with 405 additions and 649 deletions

1
.gitignore vendored
View File

@ -17,6 +17,7 @@ deepface/extendedmodels/__pycache__/*
deepface/subsidiarymodels/__pycache__/*
deepface/detectors/__pycache__/*
tests/dataset/*.pkl
tests/sandbox.ipynb
.DS_Store
deepface/.DS_Store
*.pyc

File diff suppressed because it is too large Load Diff

View File

@ -27,24 +27,6 @@ elif tf_major_version == 2:
#--------------------------------------------------
def initialize_input(img1_path, img2_path = None):
if type(img1_path) == list:
bulkProcess = True
img_list = img1_path.copy()
else:
bulkProcess = False
if (
(type(img2_path) == str and img2_path != None) #exact image path, base64 image
or (isinstance(img2_path, np.ndarray) and img2_path.any()) #numpy array
):
img_list = [[img1_path, img2_path]]
else: #analyze function passes just img1_path
img_list = [img1_path]
return img_list, bulkProcess
def initialize_folder():
home = get_deepface_home()
@ -59,6 +41,8 @@ def initialize_folder():
def get_deepface_home():
return str(os.getenv('DEEPFACE_HOME', default=Path.home()))
#--------------------------------------------------
def loadBase64Img(uri):
encoded_data = uri.split(',')[1]
nparr = np.fromstring(base64.b64decode(encoded_data), np.uint8)
@ -93,35 +77,71 @@ def load_image(img):
return img
def detect_face(img, detector_backend = 'opencv', grayscale = False, enforce_detection = True, align = True):
#--------------------------------------------------
def extract_faces(img, target_size=(224, 224), detector_backend = 'opencv', grayscale = False, enforce_detection = True, align = True):
# this is going to store a list of img itself (numpy), it region and confidence
extracted_faces = []
#img might be path, base64 or numpy array. Convert it to numpy whatever it is.
img = load_image(img)
img_region = [0, 0, img.shape[1], img.shape[0]]
#----------------------------------------------
#people would like to skip detection and alignment if they already have pre-processed images
if detector_backend == 'skip':
return img, img_region
#----------------------------------------------
#detector stored in a global variable in FaceDetector object.
#this call should be completed very fast because it will return found in memory
#it will not build face detector model in each call (consider for loops)
face_detector = FaceDetector.build_model(detector_backend)
try:
detected_face, img_region, _ = FaceDetector.detect_face(face_detector, detector_backend, img, align)
except: #if detected face shape is (0, 0) and alignment cannot be performed, this block will be run
detected_face = None
if (isinstance(detected_face, np.ndarray)):
return detected_face, img_region
face_objs = [(img, img_region, 0)]
else:
if detected_face == None:
if enforce_detection != True:
return img, img_region
else:
raise ValueError("Face could not be detected. Please confirm that the picture is a face photo or consider to set enforce_detection param to False.")
face_detector = FaceDetector.build_model(detector_backend)
face_objs = FaceDetector.detect_faces(face_detector, detector_backend, img, align)
# in case of no face found
if len(face_objs) == 0 and enforce_detection == True:
raise ValueError("Face could not be detected. Please confirm that the picture is a face photo or consider to set enforce_detection param to False.")
elif len(face_objs) == 0 and enforce_detection == False:
face_objs = [(img, img_region, 0)]
for current_img, current_region, confidence in face_objs:
if current_img.shape[0] > 0 and current_img.shape[1] > 0:
if grayscale == True:
current_img = cv2.cvtColor(current_img, cv2.COLOR_BGR2GRAY)
# resize and padding
if current_img.shape[0] > 0 and current_img.shape[1] > 0:
factor_0 = target_size[0] / current_img.shape[0]
factor_1 = target_size[1] / current_img.shape[1]
factor = min(factor_0, factor_1)
dsize = (int(current_img.shape[1] * factor), int(current_img.shape[0] * factor))
current_img = cv2.resize(current_img, dsize)
diff_0 = target_size[0] - current_img.shape[0]
diff_1 = target_size[1] - current_img.shape[1]
if grayscale == False:
# Put the base image in the middle of the padded image
current_img = np.pad(current_img, ((diff_0 // 2, diff_0 - diff_0 // 2), (diff_1 // 2, diff_1 - diff_1 // 2), (0, 0)), 'constant')
else:
current_img = np.pad(current_img, ((diff_0 // 2, diff_0 - diff_0 // 2), (diff_1 // 2, diff_1 - diff_1 // 2)), 'constant')
#double check: if target image is not still the same size with target.
if current_img.shape[0:2] != target_size:
current_img = cv2.resize(current_img, target_size)
#normalizing the image pixels
img_pixels = image.img_to_array(current_img) #what this line doing? must?
img_pixels = np.expand_dims(img_pixels, axis = 0)
img_pixels /= 255 #normalize input in [0, 1]
#int cast is for the exception - object of type 'float32' is not JSON serializable
region_obj = {"x": int(current_region[0]), "y": int(current_region[1]), "w": int(current_region[2]), "h": int(current_region[3])}
extracted_face = [img_pixels, region_obj, confidence]
extracted_faces.append(extracted_face)
if len(extracted_faces) == 0 and enforce_detection == True:
raise ValueError("Detected face shape is ", img.shape,". Consider to set enforce_detection argument to False.")
return extracted_faces
def normalize_input(img, normalization = 'base'):
@ -169,94 +189,21 @@ def normalize_input(img, normalization = 'base'):
return img
def preprocess_face(img, target_size=(224, 224), grayscale = False, enforce_detection = True, detector_backend = 'opencv', return_region = False, align = True):
def find_target_size(model_name):
#img might be path, base64 or numpy array. Convert it to numpy whatever it is.
img = load_image(img)
base_img = img.copy()
target_sizes = {
"VGG-Face": (224, 224),
"Facenet": (160, 160),
"Facenet512": (160, 160),
"OpenFace": (96, 96),
"DeepFace": (152, 152),
"DeepID": (55, 47), #TODO: might be opposite
"Dlib": (150, 150),
"ArcFace": (112, 112),
"SFace": (112, 112)
}
img, region = detect_face(img = img, detector_backend = detector_backend, grayscale = grayscale, enforce_detection = enforce_detection, align = align)
#--------------------------
if img.shape[0] == 0 or img.shape[1] == 0:
if enforce_detection == True:
raise ValueError("Detected face shape is ", img.shape,". Consider to set enforce_detection argument to False.")
else: #restore base image
img = base_img.copy()
#--------------------------
#post-processing
if grayscale == True:
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#---------------------------------------------------
#resize image to expected shape
# img = cv2.resize(img, target_size) #resize causes transformation on base image, adding black pixels to resize will not deform the base image
if img.shape[0] > 0 and img.shape[1] > 0:
factor_0 = target_size[0] / img.shape[0]
factor_1 = target_size[1] / img.shape[1]
factor = min(factor_0, factor_1)
dsize = (int(img.shape[1] * factor), int(img.shape[0] * factor))
img = cv2.resize(img, dsize)
# Then pad the other side to the target size by adding black pixels
diff_0 = target_size[0] - img.shape[0]
diff_1 = target_size[1] - img.shape[1]
if grayscale == False:
# Put the base image in the middle of the padded image
img = np.pad(img, ((diff_0 // 2, diff_0 - diff_0 // 2), (diff_1 // 2, diff_1 - diff_1 // 2), (0, 0)), 'constant')
else:
img = np.pad(img, ((diff_0 // 2, diff_0 - diff_0 // 2), (diff_1 // 2, diff_1 - diff_1 // 2)), 'constant')
#------------------------------------------
#double check: if target image is not still the same size with target.
if img.shape[0:2] != target_size:
img = cv2.resize(img, target_size)
#---------------------------------------------------
#normalizing the image pixels
img_pixels = image.img_to_array(img) #what this line doing? must?
img_pixels = np.expand_dims(img_pixels, axis = 0)
img_pixels /= 255 #normalize input in [0, 1]
#---------------------------------------------------
if return_region == True:
return img_pixels, region
else:
return img_pixels
def find_input_shape(model):
#face recognition models have different size of inputs
#my environment returns (None, 224, 224, 3) but some people mentioned that they got [(None, 224, 224, 3)]. I think this is because of version issue.
input_shape = model.layers[0].input_shape
if type(input_shape) == list:
input_shape = input_shape[0][1:3]
else:
input_shape = input_shape[1:3]
#----------------------
#issue 289: it seems that tf 2.5 expects you to resize images with (x, y)
#whereas its older versions expect (y, x)
if tf_major_version == 2 and tf_minor_version >= 5:
x = input_shape[0]; y = input_shape[1]
input_shape = (y, x)
#----------------------
if type(input_shape) == list: #issue 197: some people got array here instead of tuple
input_shape = tuple(input_shape)
return input_shape
if model_name not in target_sizes.keys():
raise ValueError(f"unimplemented model name - {model_name}")
return target_sizes[model_name]

View File

@ -50,7 +50,7 @@ def analysis(db_path, model_name = 'VGG-Face', detector_backend = 'opencv', dist
#------------------------
input_shape = functions.find_input_shape(model)
input_shape = functions.find_target_size(model_name=model_name)
input_shape_x = input_shape[0]; input_shape_y = input_shape[1]
#tuned thresholds for model and metric pair

BIN
tests/dataset/couple.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 923 KiB

View File

@ -1,6 +1,7 @@
import warnings
import os
import tensorflow as tf
import numpy as np
import cv2
from deepface import DeepFace