new backends for detectors

This commit is contained in:
Şefik Serangil 2020-09-05 22:47:20 +03:00
parent adb8c85354
commit b9abfb9c00
4 changed files with 340 additions and 158 deletions

View File

@ -22,8 +22,7 @@ from deepface.basemodels.DlibResNet import DlibResNet
from deepface.extendedmodels import Age, Gender, Race, Emotion
from deepface.commons import functions, realtime, distance as dst
def verify(img1_path, img2_path=''
, model_name ='VGG-Face', distance_metric = 'cosine', model = None, enforce_detection = True):
def verify(img1_path, img2_path = '', model_name ='VGG-Face', distance_metric = 'cosine', model = None, enforce_detection = True, detector_backend = 'opencv'):
tic = time.time()
@ -105,8 +104,8 @@ def verify(img1_path, img2_path=''
input_shape = input_shape[1:3]
img1 = functions.preprocess_face(img1_path, input_shape, enforce_detection = enforce_detection)
img2 = functions.preprocess_face(img2_path, input_shape, enforce_detection = enforce_detection)
img1 = functions.preprocess_face(img = img1_path, target_size = input_shape, enforce_detection = enforce_detection, detector_backend = detector_backend)
img2 = functions.preprocess_face(img = img2_path, target_size = input_shape, enforce_detection = enforce_detection, detector_backend = detector_backend)
img1_representation = custom_model.predict(img1)[0,:]
img2_representation = custom_model.predict(img2)[0,:]
@ -274,8 +273,8 @@ def verify(img1_path, img2_path=''
#----------------------
#crop and align faces
img1 = functions.preprocess_face(img1_path, (input_shape_y, input_shape_x), enforce_detection = enforce_detection)
img2 = functions.preprocess_face(img2_path, (input_shape_y, input_shape_x), enforce_detection = enforce_detection)
img1 = functions.preprocess_face(img=img1_path, target_size=(input_shape_y, input_shape_x), enforce_detection = enforce_detection, detector_backend = detector_backend)
img2 = functions.preprocess_face(img=img2_path, target_size=(input_shape_y, input_shape_x), enforce_detection = enforce_detection, detector_backend = detector_backend)
#----------------------
#find embeddings
@ -348,7 +347,7 @@ def verify(img1_path, img2_path=''
#return resp_objects
def analyze(img_path, actions = [], models = {}, enforce_detection = True):
def analyze(img_path, actions = [], models = {}, enforce_detection = True, detector_backend = 'opencv'):
if type(img_path) == list:
img_paths = img_path.copy()
@ -422,7 +421,7 @@ def analyze(img_path, actions = [], models = {}, enforce_detection = True):
if action == 'emotion':
emotion_labels = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral']
img = functions.preprocess_face(img_path, target_size = (48, 48), grayscale = True, enforce_detection = enforce_detection)
img = functions.preprocess_face(img = img_path, target_size = (48, 48), grayscale = True, enforce_detection = enforce_detection, detector_backend = detector_backend)
emotion_predictions = emotion_model.predict(img)[0,:]
@ -454,7 +453,7 @@ def analyze(img_path, actions = [], models = {}, enforce_detection = True):
elif action == 'gender':
if img_224 is None:
img_224 = functions.preprocess_face(img_path, target_size = (224, 224), grayscale = False, enforce_detection = enforce_detection) #just emotion model expects grayscale images
img_224 = functions.preprocess_face(img = img_path, target_size = (224, 224), grayscale = False, enforce_detection = enforce_detection, detector_backend = detector_backend) #just emotion model expects grayscale images
#print("gender prediction")
gender_prediction = gender_model.predict(img_224)[0,:]
@ -468,7 +467,7 @@ def analyze(img_path, actions = [], models = {}, enforce_detection = True):
elif action == 'race':
if img_224 is None:
img_224 = functions.preprocess_face(img_path, target_size = (224, 224), grayscale = False, enforce_detection = enforce_detection) #just emotion model expects grayscale images
img_224 = functions.preprocess_face(img = img_path, target_size = (224, 224), grayscale = False, enforce_detection = enforce_detection, detector_backend = detector_backend) #just emotion model expects grayscale images
race_predictions = race_model.predict(img_224)[0,:]
race_labels = ['asian', 'indian', 'black', 'white', 'middle eastern', 'latino hispanic']
@ -515,12 +514,11 @@ def analyze(img_path, actions = [], models = {}, enforce_detection = True):
#return resp_objects
def detectFace(img_path):
img = functions.preprocess_face(img_path)[0] #preprocess_face returns (1, 224, 224, 3)
def detectFace(img_path, detector_backend = 'opencv'):
img = functions.preprocess_face(img = img_path, detector_backend = detector_backend)[0] #preprocess_face returns (1, 224, 224, 3)
return img[:, :, ::-1] #bgr to rgb
def find(img_path, db_path
, model_name ='VGG-Face', distance_metric = 'cosine', model = None, enforce_detection = True):
def find(img_path, db_path, model_name ='VGG-Face', distance_metric = 'cosine', model = None, enforce_detection = True, detector_backend = 'opencv'):
model_names = ['VGG-Face', 'Facenet', 'OpenFace', 'DeepFace']
metric_names = ['cosine', 'euclidean', 'euclidean_l2']
@ -660,7 +658,7 @@ def find(img_path, db_path
input_shape_x = input_shape[0]; input_shape_y = input_shape[1]
img = functions.preprocess_face(employee, (input_shape_y, input_shape_x), enforce_detection = enforce_detection)
img = functions.preprocess_face(img = employee, target_size = (input_shape_y, input_shape_x), enforce_detection = enforce_detection, detector_backend = detector_backend)
representation = model.predict(img)[0,:]
instance = []
@ -686,7 +684,7 @@ def find(img_path, db_path
input_shape_x = input_shape[0]; input_shape_y = input_shape[1]
img = functions.preprocess_face(employee, (input_shape_y, input_shape_x), enforce_detection = enforce_detection)
img = functions.preprocess_face(img = employee, target_size = (input_shape_y, input_shape_x), enforce_detection = enforce_detection, detector_backend = detector_backend)
representation = ensemble_model.predict(img)[0,:]
instance.append(representation)
@ -731,7 +729,7 @@ def find(img_path, db_path
else:
input_shape = input_shape[1:3]
img = functions.preprocess_face(img_path, input_shape, enforce_detection = enforce_detection)
img = functions.preprocess_face(img = img_path, target_size = input_shape, enforce_detection = enforce_detection, detector_backend = detector_backend)
target_representation = ensemble_model.predict(img)[0,:]
for k in metric_names:
@ -823,7 +821,7 @@ def find(img_path, db_path
input_shape_x = input_shape[0]; input_shape_y = input_shape[1]
img = functions.preprocess_face(img_path, (input_shape_y, input_shape_x), enforce_detection = enforce_detection)
img = functions.preprocess_face(img = img_path, target_size = (input_shape_y, input_shape_x), enforce_detection = enforce_detection, detector_backend = detector_backend)
target_representation = model.predict(img)[0,:]
distances = []
@ -872,7 +870,8 @@ def allocateMemory():
print("Analyzing your system...")
functions.allocateMemory()
#---------------------------
#main
functions.initializeFolder()
#---------------------------

View File

@ -14,7 +14,3 @@ def findEuclideanDistance(source_representation, test_representation):
def l2_normalize(x):
return x / np.sqrt(np.sum(np.multiply(x, x)))
"""def l2_normalize(x, axis=-1, epsilon=1e-10):
output = x / np.sqrt(np.maximum(np.sum(np.square(x), axis=axis, keepdims=True), epsilon))
return output"""

View File

@ -16,6 +16,7 @@ import multiprocessing
import subprocess
import tensorflow as tf
import keras
import bz2
def loadBase64Img(uri):
encoded_data = uri.split(',')[1]
@ -29,18 +30,6 @@ def distance(a, b):
return math.sqrt(((x2 - x1) * (x2 - x1)) + ((y2 - y1) * (y2 - y1)))
def findFileHash(file):
BLOCK_SIZE = 65536 # The size of each read from the file
file_hash = hashlib.sha256() # Create the hash object, can use something other than `.sha256()` if you wish
with open(file, 'rb') as f: # Open the file to read it's bytes
fb = f.read(BLOCK_SIZE) # Read from the file. Take in the amount declared above
while len(fb) > 0: # While there is still data being read from the file
file_hash.update(fb) # Update the hash
fb = f.read(BLOCK_SIZE) # Read the next block from the file
return file_hash.hexdigest()
def initializeFolder():
home = str(Path.home())
@ -53,46 +42,6 @@ def initializeFolder():
os.mkdir(home+"/.deepface/weights")
print("Directory ",home,"/.deepface/weights created")
#----------------------------------
"""
#avoid interrupted file download
weight_hashes = [
['age_model_weights.h5', '0aeff75734bfe794113756d2bfd0ac823d51e9422c8961125b570871d3c2b114']
, ['facenet_weights.h5', '90659cc97bfda5999120f95d8e122f4d262cca11715a21e59ba024bcce816d5c']
, ['facial_expression_model_weights.h5', 'e8e8851d3fa05c001b1c27fd8841dfe08d7f82bb786a53ad8776725b7a1e824c']
, ['gender_model_weights.h5', '45513ce5678549112d25ab85b1926fb65986507d49c674a3d04b2ba70dba2eb5']
, ['openface_weights.h5', '5b41897ec6dd762cee20575eee54ed4d719a78cb982b2080a87dc14887d88a7a']
, ['race_model_single_batch.h5', 'eb22b28b1f6dfce65b64040af4e86003a5edccb169a1a338470dde270b6f5e54']
, ['vgg_face_weights.h5', '759266b9614d0fd5d65b97bf716818b746cc77ab5944c7bffc937c6ba9455d8c']
]
for i in weight_hashes:
weight_file = home+"/.deepface/weights/"+i[0]
expected_hash = i[1]
#check file exits
if os.path.isfile(weight_file) == True:
current_hash = findFileHash(weight_file)
if current_hash != expected_hash:
print("hash violated for ", i[0],". It's going to be removed.")
os.remove(weight_file)
"""
#----------------------------------
"""
TODO: C4.5 tree finds the following split points for cosine, euclidean, euclidean_l2 respectively.
Check these thresholds in unit tests.
vgg-face: 0.3147, 0.4764, 0.7933
facenet: 0.4062, 11.2632, 0.9014
openface: 0.1118, 0.4729, 0.4729
deepface: 0.1349, 42.2178, 0.5194
"""
"""
TODO: create an ensemble method
"""
def findThreshold(model_name, distance_metric):
threshold = 0.40
@ -154,20 +103,10 @@ def get_opencv_path():
path = folders[0]
for folder in folders[1:]:
path = path + "/" + folder
face_detector_path = path+"/data/haarcascade_frontalface_default.xml"
eye_detector_path = path+"/data/haarcascade_eye.xml"
if os.path.isfile(face_detector_path) != True:
raise ValueError("Confirm that opencv is installed on your environment! Expected path ",face_detector_path," violated.")
return path+"/data/"
def preprocess_face(img, target_size=(224, 224), grayscale = False, enforce_detection = True):
img_path = ""
#-----------------------
def load_image(img):
exact_image = False
if type(img).__module__ == np.__name__:
@ -176,56 +115,218 @@ def preprocess_face(img, target_size=(224, 224), grayscale = False, enforce_dete
base64_img = False
if len(img) > 11 and img[0:11] == "data:image/":
base64_img = True
#-----------------------
opencv_path = get_opencv_path()
face_detector_path = opencv_path+"haarcascade_frontalface_default.xml"
eye_detector_path = opencv_path+"haarcascade_eye.xml"
if os.path.isfile(face_detector_path) != True:
raise ValueError("Confirm that opencv is installed on your environment! Expected path ",face_detector_path," violated.")
#--------------------------------
face_detector = cv2.CascadeClassifier(face_detector_path)
eye_detector = cv2.CascadeClassifier(eye_detector_path)
#---------------------------
if base64_img == True:
img = loadBase64Img(img)
elif exact_image != True: #image path passed as input
if os.path.isfile(img) != True:
raise ValueError("Confirm that ",img," exists")
img = cv2.imread(img)
img_raw = img.copy()
return img
#--------------------------------
def detect_face(img, detector_backend = 'opencv', grayscale = False, enforce_detection = True):
faces = []
detectors = ['opencv', 'ssd', 'dlib', 'mtcnn']
try:
faces = face_detector.detectMultiScale(img, 1.3, 5)
except:
pass
if detector_backend not in detectors:
raise ValueError("Valid backends are ", detectors," but you passed ", detector_backend)
#print("found faces in ",image_path," is ",len(faces))
#---------------------------
if len(faces) > 0:
x,y,w,h = faces[0]
detected_face = img[int(y):int(y+h), int(x):int(x+w)]
detected_face_gray = cv2.cvtColor(detected_face, cv2.COLOR_BGR2GRAY)
home = str(Path.home())
if detector_backend == 'opencv':
#get opencv configuration up first
opencv_path = get_opencv_path()
face_detector_path = opencv_path+"haarcascade_frontalface_default.xml"
if os.path.isfile(face_detector_path) != True:
raise ValueError("Confirm that opencv is installed on your environment! Expected path ",face_detector_path," violated.")
face_detector = cv2.CascadeClassifier(face_detector_path)
#--------------------------
faces = []
try:
faces = face_detector.detectMultiScale(img, 1.3, 5)
except:
pass
if len(faces) > 0:
x,y,w,h = faces[0] #focus on the 1st face found in the image
detected_face = img[int(y):int(y+h), int(x):int(x+w)]
return detected_face
else: #if no face detected
if enforce_detection != True:
return img
else:
raise ValueError("Face could not be detected. Please confirm that the picture is a face photo or consider to set enforce_detection param to False.")
elif detector_backend == 'ssd':
#---------------------------
#face alignment
#check required ssd model exists in the home/.deepface/weights folder
#model structure
if os.path.isfile(home+'/.deepface/weights/deploy.prototxt') != True:
print("deploy.prototxt will be downloaded...")
url = "https://github.com/opencv/opencv/raw/3.4.0/samples/dnn/face_detector/deploy.prototxt"
output = home+'/.deepface/weights/deploy.prototxt'
gdown.download(url, output, quiet=False)
#pre-trained weights
if os.path.isfile(home+'/.deepface/weights/res10_300x300_ssd_iter_140000.caffemodel') != True:
print("res10_300x300_ssd_iter_140000.caffemodel will be downloaded...")
url = "https://github.com/opencv/opencv_3rdparty/raw/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel"
output = home+'/.deepface/weights/res10_300x300_ssd_iter_140000.caffemodel'
gdown.download(url, output, quiet=False)
#---------------------------
ssd_detector = cv2.dnn.readNetFromCaffe(
home+"/.deepface/weights/deploy.prototxt",
home+"/.deepface/weights/res10_300x300_ssd_iter_140000.caffemodel"
)
ssd_labels = ["img_id", "is_face", "confidence", "left", "top", "right", "bottom"]
target_size = (300, 300)
base_img = img.copy() #we will restore base_img to img later
original_size = img.shape
img = cv2.resize(img, target_size)
aspect_ratio_x = (original_size[1] / target_size[1])
aspect_ratio_y = (original_size[0] / target_size[0])
imageBlob = cv2.dnn.blobFromImage(image = img)
ssd_detector.setInput(imageBlob)
detections = ssd_detector.forward()
detections_df = pd.DataFrame(detections[0][0], columns = ssd_labels)
detections_df = detections_df[detections_df['is_face'] == 1] #0: background, 1: face
detections_df = detections_df[detections_df['confidence'] >= 0.90]
detections_df['left'] = (detections_df['left'] * 300).astype(int)
detections_df['bottom'] = (detections_df['bottom'] * 300).astype(int)
detections_df['right'] = (detections_df['right'] * 300).astype(int)
detections_df['top'] = (detections_df['top'] * 300).astype(int)
if detections_df.shape[0] > 0:
#TODO: sort detections_df
#get the first face in the image
instance = detections_df.iloc[0]
left = instance["left"]
right = instance["right"]
bottom = instance["bottom"]
top = instance["top"]
detected_face = base_img[int(top*aspect_ratio_y):int(bottom*aspect_ratio_y), int(left*aspect_ratio_x):int(right*aspect_ratio_x)]
return detected_face
else: #if no face detected
if enforce_detection != True:
img = base_img.copy()
return img
else:
raise ValueError("Face could not be detected. Please confirm that the picture is a face photo or consider to set enforce_detection param to False.")
elif detector_backend == 'dlib':
import dlib #this is not a must library within deepface. that's why, I didn't put this import to a global level. version: 19.20.0
detector = dlib.get_frontal_face_detector()
detections = detector(img, 1)
if len(detections) > 0:
for idx, d in enumerate(detections):
left = d.left(); right = d.right()
top = d.top(); bottom = d.bottom()
detected_face = img[top:bottom, left:right]
return detected_face
else: #if no face detected
if enforce_detection != True:
return img
else:
raise ValueError("Face could not be detected. Please confirm that the picture is a face photo or consider to set enforce_detection param to False.")
elif detector_backend == 'mtcnn':
from mtcnn import MTCNN #this is not a must library within deepface
mtcnn_detector = MTCNN()
detections = mtcnn_detector.detect_faces(img)
if len(detections) > 0:
detection = detections[0]
x, y, w, h = detection["box"]
detected_face = img[int(y):int(y+h), int(x):int(x+w)]
return detected_face
else: #if no face detected
if enforce_detection != True:
return img
else:
raise ValueError("Face could not be detected. Please confirm that the picture is a face photo or consider to set enforce_detection param to False.")
return 0
def align_face(img, detector_backend = 'opencv'):
home = str(Path.home())
if (detector_backend == 'opencv') or (detector_backend == 'ssd'):
opencv_path = get_opencv_path()
eye_detector_path = opencv_path+"haarcascade_eye.xml"
eye_detector = cv2.CascadeClassifier(eye_detector_path)
detected_face_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #eye detector expects gray scale image
eyes = eye_detector.detectMultiScale(detected_face_gray)
if len(eyes) >= 2:
#find the largest 2 eye
base_eyes = eyes[:, 2]
items = []
@ -243,11 +344,9 @@ def preprocess_face(img, target_size=(224, 224), grayscale = False, enforce_dete
eye_1 = eyes[0]; eye_2 = eyes[1]
if eye_1[0] < eye_2[0]:
left_eye = eye_1
right_eye = eye_2
left_eye = eye_1; right_eye = eye_2
else:
left_eye = eye_2
right_eye = eye_1
left_eye = eye_2; right_eye = eye_1
#-----------------------
#find center of eyes
@ -290,49 +389,139 @@ def preprocess_face(img, target_size=(224, 224), grayscale = False, enforce_dete
if direction == -1:
angle = 90 - angle
img = Image.fromarray(img_raw)
img = Image.fromarray(img)
img = np.array(img.rotate(direction * angle))
#you recover the base image and face detection disappeared. apply again.
faces = face_detector.detectMultiScale(img, 1.3, 5)
if len(faces) > 0:
x,y,w,h = faces[0]
detected_face = img[int(y):int(y+h), int(x):int(x+w)]
return img
else:
return img
elif detector_backend == 'dlib':
#check required file exists in the home/.deepface/weights folder
if os.path.isfile(home+'/.deepface/weights/shape_predictor_5_face_landmarks.dat') != True:
print("shape_predictor_5_face_landmarks.dat.bz2 is going to be downloaded")
url = "http://dlib.net/files/shape_predictor_5_face_landmarks.dat.bz2"
output = home+'/.deepface/weights/'+url.split("/")[-1]
gdown.download(url, output, quiet=False)
zipfile = bz2.BZ2File(output)
data = zipfile.read()
newfilepath = output[:-4] #discard .bz2 extension
open(newfilepath, 'wb').write(data)
#------------------------------
import dlib
detector = dlib.get_frontal_face_detector()
sp = dlib.shape_predictor(home+"/.deepface/weights/shape_predictor_5_face_landmarks.dat")
detections = detector(img, 1)
if len(detections) > 0:
detected_face = detections[0]
img_shape = sp(img, detected_face)
img_aligned = dlib.get_face_chip(img, img_shape)
return img_aligned
else:
return img
elif detector_backend == 'mtcnn':
from mtcnn import MTCNN
mtcnn_detector = MTCNN()
detections = mtcnn_detector.detect_faces(img)
if len(detections) > 0:
detection = detections[0]
keypoints = detection["keypoints"]
left_eye = keypoints["left_eye"]
right_eye = keypoints["right_eye"]
left_eye_x, left_eye_y = left_eye
right_eye_x, right_eye_y = right_eye
#-----------------------
#face alignment block end
#---------------------------
#face alignment block needs colorful images. that's why, converting to gray scale logic moved to here.
if grayscale == True:
detected_face = cv2.cvtColor(detected_face, cv2.COLOR_BGR2GRAY)
detected_face = cv2.resize(detected_face, target_size)
img_pixels = image.img_to_array(detected_face)
img_pixels = np.expand_dims(img_pixels, axis = 0)
#normalize input in [0, 1]
img_pixels /= 255
return img_pixels
else:
if (exact_image == True) or (enforce_detection != True):
#find rotation direction
if left_eye_y > right_eye_y:
point_3rd = (right_eye_x, left_eye_y)
direction = -1 #rotate same direction to clock
else:
point_3rd = (left_eye_x, right_eye_y)
direction = 1 #rotate inverse direction of clock
if grayscale == True:
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#-----------------------
#find length of triangle edges
a = distance(left_eye, point_3rd)
b = distance(right_eye, point_3rd)
c = distance(right_eye, left_eye)
#-----------------------
#apply cosine rule
if b != 0 and c != 0: #this multiplication causes division by zero in cos_a calculation
cos_a = (b*b + c*c - a*a)/(2*b*c)
angle = np.arccos(cos_a) #angle in radian
angle = (angle * 180) / math.pi #radian to degree
#-----------------------
#rotate base image
if direction == -1:
angle = 90 - angle
img = Image.fromarray(img)
img = np.array(img.rotate(direction * angle))
return img #return img anyway
img = cv2.resize(img, target_size)
img_pixels = image.img_to_array(img)
img_pixels = np.expand_dims(img_pixels, axis = 0)
img_pixels /= 255
return img_pixels
else:
raise ValueError("Face could not be detected. Please confirm that the picture is a face photo or consider to set enforce_detection param to False.")
return img
def preprocess_face(img, target_size=(224, 224), grayscale = False, enforce_detection = True, detector_backend = 'opencv'):
#img might be path, base64 or numpy array. Convert it to numpy whatever it is.
img = load_image(img)
img_base = img.copy()
#face detection
img = detect_face(img = img, detector_backend = detector_backend, grayscale = grayscale, enforce_detection = enforce_detection)
#--------------------------
#face alignment
#img = align_face(img = img, detector_backend = detector_backend)
img = align_face(img = img_base, detector_backend = detector_backend)
img = detect_face(img = img, detector_backend = detector_backend, grayscale = grayscale, enforce_detection = False)
#note: if you apply align first and detect second, it might be problematic for pictures including more than one faces.
#we detected one face and align the base image based on the detected one.
#pros: aligned images have many black pixels if you align detected face
#cons: this requires to apply detection twice.
#--------------------------
#post-processing
if grayscale == True:
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = cv2.resize(img, target_size)
img_pixels = image.img_to_array(img)
img_pixels = np.expand_dims(img_pixels, axis = 0)
img_pixels /= 255 #normalize input in [0, 1]
return img_pixels
def allocateMemory():
#find allocated memories
@ -418,5 +607,3 @@ def allocateMemory():
print("DeepFace will run on CPU")
else:
print("DeepFace will run on CPU")
#------------------------------

View File

@ -8,7 +8,7 @@ os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
dataset = [
['dataset/img1.jpg', 'dataset/img2.jpg', True],
['dataset/img5.jpg', 'dataset/img6.jpg', True]
['dataset/img1.jpg', 'dataset/img6.jpg', True]
]
print("-----------------------------------------")
@ -192,7 +192,7 @@ for i in range(0, len(dataset)):
#-----------------------------------
print("--------------------------")
print("Pre-trained ensemled method")
print("Pre-trained ensemble method")
from deepface import DeepFace
from deepface.basemodels import VGGFace, OpenFace, Facenet, FbDeepFace