mirror of
https://github.com/serengil/deepface.git
synced 2025-06-08 04:25:21 +00:00
Merge pull request #962 from serengil/feat-task-2101-interfaces
cosmetic changes about interfaces
This commit is contained in:
commit
bc30c904a0
@ -1,5 +1,7 @@
|
||||
from typing import List
|
||||
import os
|
||||
import gdown
|
||||
import numpy as np
|
||||
from deepface.commons import functions
|
||||
from deepface.commons.logger import Logger
|
||||
from deepface.models.FacialRecognition import FacialRecognition
|
||||
@ -43,7 +45,7 @@ else:
|
||||
)
|
||||
|
||||
# pylint: disable=too-few-public-methods
|
||||
class ArcFace(FacialRecognition):
|
||||
class ArcFaceClient(FacialRecognition):
|
||||
"""
|
||||
ArcFace model class
|
||||
"""
|
||||
@ -52,6 +54,18 @@ class ArcFace(FacialRecognition):
|
||||
self.model = load_model()
|
||||
self.model_name = "ArcFace"
|
||||
|
||||
def find_embeddings(self, img: np.ndarray) -> List[float]:
|
||||
"""
|
||||
find embeddings with ArcFace model
|
||||
Args:
|
||||
img (np.ndarray): pre-loaded image in BGR
|
||||
Returns
|
||||
embeddings (list): multi-dimensional vector
|
||||
"""
|
||||
# model.predict causes memory issue when it is called in a for loop
|
||||
# embedding = model.predict(img, verbose=0)[0].tolist()
|
||||
return self.model(img, training=False).numpy()[0].tolist()
|
||||
|
||||
|
||||
def load_model(
|
||||
url="https://github.com/serengil/deepface_models/releases/download/v1.0/arcface_weights.h5",
|
||||
|
@ -1,5 +1,7 @@
|
||||
from typing import List
|
||||
import os
|
||||
import gdown
|
||||
import numpy as np
|
||||
from deepface.commons import functions
|
||||
from deepface.commons.logger import Logger
|
||||
from deepface.models.FacialRecognition import FacialRecognition
|
||||
@ -39,7 +41,7 @@ else:
|
||||
# -------------------------------------
|
||||
|
||||
# pylint: disable=too-few-public-methods
|
||||
class DeepId(FacialRecognition):
|
||||
class DeepIdClient(FacialRecognition):
|
||||
"""
|
||||
DeepId model class
|
||||
"""
|
||||
@ -48,6 +50,18 @@ class DeepId(FacialRecognition):
|
||||
self.model = load_model()
|
||||
self.model_name = "DeepId"
|
||||
|
||||
def find_embeddings(self, img: np.ndarray) -> List[float]:
|
||||
"""
|
||||
find embeddings with DeepId model
|
||||
Args:
|
||||
img (np.ndarray): pre-loaded image in BGR
|
||||
Returns
|
||||
embeddings (list): multi-dimensional vector
|
||||
"""
|
||||
# model.predict causes memory issue when it is called in a for loop
|
||||
# embedding = model.predict(img, verbose=0)[0].tolist()
|
||||
return self.model(img, training=False).numpy()[0].tolist()
|
||||
|
||||
|
||||
def load_model(
|
||||
url="https://github.com/serengil/deepface_models/releases/download/v1.0/deepid_keras_weights.h5",
|
||||
|
@ -1,3 +1,4 @@
|
||||
from typing import List
|
||||
import os
|
||||
import bz2
|
||||
import gdown
|
||||
@ -11,7 +12,7 @@ logger = Logger(module="basemodels.DlibResNet")
|
||||
# pylint: disable=too-few-public-methods
|
||||
|
||||
|
||||
class Dlib(FacialRecognition):
|
||||
class DlibClient(FacialRecognition):
|
||||
"""
|
||||
Dlib model class
|
||||
"""
|
||||
@ -20,15 +21,33 @@ class Dlib(FacialRecognition):
|
||||
self.model = DlibResNet()
|
||||
self.model_name = "Dlib"
|
||||
|
||||
def find_embeddings(self, img: np.ndarray) -> list:
|
||||
def find_embeddings(self, img: np.ndarray) -> List[float]:
|
||||
"""
|
||||
Custom find embeddings function of Dlib different than FacialRecognition's one
|
||||
find embeddings with Dlib model - different than regular models
|
||||
Args:
|
||||
img (np.ndarray)
|
||||
Retunrs:
|
||||
embeddings (list)
|
||||
img (np.ndarray): pre-loaded image in BGR
|
||||
Returns
|
||||
embeddings (list): multi-dimensional vector
|
||||
"""
|
||||
return self.model.predict(img)[0].tolist()
|
||||
# return self.model.predict(img)[0].tolist()
|
||||
|
||||
# extract_faces returns 4 dimensional images
|
||||
if len(img.shape) == 4:
|
||||
img = img[0]
|
||||
|
||||
# bgr to rgb
|
||||
img = img[:, :, ::-1] # bgr to rgb
|
||||
|
||||
# img is in scale of [0, 1] but expected [0, 255]
|
||||
if img.max() <= 1:
|
||||
img = img * 255
|
||||
|
||||
img = img.astype(np.uint8)
|
||||
|
||||
img_representation = self.model.model.compute_face_descriptor(img)
|
||||
img_representation = np.array(img_representation)
|
||||
img_representation = np.expand_dims(img_representation, axis=0)
|
||||
return img_representation[0].tolist()
|
||||
|
||||
|
||||
class DlibResNet:
|
||||
@ -69,38 +88,12 @@ class DlibResNet:
|
||||
|
||||
# ---------------------
|
||||
|
||||
model = dlib.face_recognition_model_v1(weight_file)
|
||||
self.__model = model
|
||||
self.model = dlib.face_recognition_model_v1(weight_file)
|
||||
|
||||
# ---------------------
|
||||
|
||||
# return None # classes must return None
|
||||
|
||||
def predict(self, img_aligned: np.ndarray) -> np.ndarray:
|
||||
|
||||
# functions.detectFace returns 4 dimensional images
|
||||
if len(img_aligned.shape) == 4:
|
||||
img_aligned = img_aligned[0]
|
||||
|
||||
# functions.detectFace returns bgr images
|
||||
img_aligned = img_aligned[:, :, ::-1] # bgr to rgb
|
||||
|
||||
# deepface.detectFace returns an array in scale of [0, 1]
|
||||
# but dlib expects in scale of [0, 255]
|
||||
if img_aligned.max() <= 1:
|
||||
img_aligned = img_aligned * 255
|
||||
|
||||
img_aligned = img_aligned.astype(np.uint8)
|
||||
|
||||
model = self.__model
|
||||
|
||||
img_representation = model.compute_face_descriptor(img_aligned)
|
||||
|
||||
img_representation = np.array(img_representation)
|
||||
img_representation = np.expand_dims(img_representation, axis=0)
|
||||
|
||||
return img_representation
|
||||
|
||||
|
||||
class DlibMetaData:
|
||||
def __init__(self):
|
@ -1,5 +1,7 @@
|
||||
from typing import List
|
||||
import os
|
||||
import gdown
|
||||
import numpy as np
|
||||
from deepface.commons import functions
|
||||
from deepface.commons.logger import Logger
|
||||
from deepface.models.FacialRecognition import FacialRecognition
|
||||
@ -43,7 +45,7 @@ else:
|
||||
# --------------------------------
|
||||
|
||||
# pylint: disable=too-few-public-methods
|
||||
class FaceNet128d(FacialRecognition):
|
||||
class FaceNet128dClient(FacialRecognition):
|
||||
"""
|
||||
FaceNet-128d model class
|
||||
"""
|
||||
@ -52,8 +54,20 @@ class FaceNet128d(FacialRecognition):
|
||||
self.model = load_facenet128d_model()
|
||||
self.model_name = "FaceNet-128d"
|
||||
|
||||
def find_embeddings(self, img: np.ndarray) -> List[float]:
|
||||
"""
|
||||
find embeddings with FaceNet-128d model
|
||||
Args:
|
||||
img (np.ndarray): pre-loaded image in BGR
|
||||
Returns
|
||||
embeddings (list): multi-dimensional vector
|
||||
"""
|
||||
# model.predict causes memory issue when it is called in a for loop
|
||||
# embedding = model.predict(img, verbose=0)[0].tolist()
|
||||
return self.model(img, training=False).numpy()[0].tolist()
|
||||
|
||||
class FaceNet512d(FacialRecognition):
|
||||
|
||||
class FaceNet512dClient(FacialRecognition):
|
||||
"""
|
||||
FaceNet-1512d model class
|
||||
"""
|
||||
@ -62,6 +76,18 @@ class FaceNet512d(FacialRecognition):
|
||||
self.model = load_facenet512d_model()
|
||||
self.model_name = "FaceNet-512d"
|
||||
|
||||
def find_embeddings(self, img: np.ndarray) -> List[float]:
|
||||
"""
|
||||
find embeddings with FaceNet-512d model
|
||||
Args:
|
||||
img (np.ndarray): pre-loaded image in BGR
|
||||
Returns
|
||||
embeddings (list): multi-dimensional vector
|
||||
"""
|
||||
# model.predict causes memory issue when it is called in a for loop
|
||||
# embedding = model.predict(img, verbose=0)[0].tolist()
|
||||
return self.model(img, training=False).numpy()[0].tolist()
|
||||
|
||||
|
||||
def scaling(x, scale):
|
||||
return x * scale
|
||||
|
@ -1,6 +1,8 @@
|
||||
from typing import List
|
||||
import os
|
||||
import zipfile
|
||||
import gdown
|
||||
import numpy as np
|
||||
from deepface.commons import functions
|
||||
from deepface.commons.logger import Logger
|
||||
from deepface.models.FacialRecognition import FacialRecognition
|
||||
@ -36,7 +38,7 @@ else:
|
||||
|
||||
# -------------------------------------
|
||||
# pylint: disable=line-too-long, too-few-public-methods
|
||||
class DeepFace(FacialRecognition):
|
||||
class DeepFaceClient(FacialRecognition):
|
||||
"""
|
||||
Fb's DeepFace model class
|
||||
"""
|
||||
@ -45,6 +47,18 @@ class DeepFace(FacialRecognition):
|
||||
self.model = load_model()
|
||||
self.model_name = "DeepFace"
|
||||
|
||||
def find_embeddings(self, img: np.ndarray) -> List[float]:
|
||||
"""
|
||||
find embeddings with OpenFace model
|
||||
Args:
|
||||
img (np.ndarray): pre-loaded image in BGR
|
||||
Returns
|
||||
embeddings (list): multi-dimensional vector
|
||||
"""
|
||||
# model.predict causes memory issue when it is called in a for loop
|
||||
# embedding = model.predict(img, verbose=0)[0].tolist()
|
||||
return self.model(img, training=False).numpy()[0].tolist()
|
||||
|
||||
|
||||
def load_model(
|
||||
url="https://github.com/swghosh/DeepFace/releases/download/weights-vggface2-2d-aligned/VGGFace2_DeepFace_weights_val-0.9034.h5.zip",
|
||||
|
@ -1,6 +1,8 @@
|
||||
from typing import List
|
||||
import os
|
||||
import gdown
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
from deepface.commons import functions
|
||||
from deepface.commons.logger import Logger
|
||||
from deepface.models.FacialRecognition import FacialRecognition
|
||||
@ -26,7 +28,7 @@ else:
|
||||
# ---------------------------------------
|
||||
|
||||
# pylint: disable=too-few-public-methods
|
||||
class OpenFace(FacialRecognition):
|
||||
class OpenFaceClient(FacialRecognition):
|
||||
"""
|
||||
OpenFace model class
|
||||
"""
|
||||
@ -35,6 +37,18 @@ class OpenFace(FacialRecognition):
|
||||
self.model = load_model()
|
||||
self.model_name = "OpenFace"
|
||||
|
||||
def find_embeddings(self, img: np.ndarray) -> List[float]:
|
||||
"""
|
||||
find embeddings with OpenFace model
|
||||
Args:
|
||||
img (np.ndarray): pre-loaded image in BGR
|
||||
Returns
|
||||
embeddings (list): multi-dimensional vector
|
||||
"""
|
||||
# model.predict causes memory issue when it is called in a for loop
|
||||
# embedding = model.predict(img, verbose=0)[0].tolist()
|
||||
return self.model(img, training=False).numpy()[0].tolist()
|
||||
|
||||
|
||||
def load_model(
|
||||
url="https://github.com/serengil/deepface_models/releases/download/v1.0/openface_weights.h5",
|
||||
|
@ -1,5 +1,5 @@
|
||||
import os
|
||||
from typing import Any
|
||||
from typing import Any, List
|
||||
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
@ -14,7 +14,7 @@ logger = Logger(module="basemodels.SFace")
|
||||
# pylint: disable=line-too-long, too-few-public-methods
|
||||
|
||||
|
||||
class SFace(FacialRecognition):
|
||||
class SFaceClient(FacialRecognition):
|
||||
"""
|
||||
SFace model class
|
||||
"""
|
||||
@ -23,15 +23,22 @@ class SFace(FacialRecognition):
|
||||
self.model = load_model()
|
||||
self.model_name = "SFace"
|
||||
|
||||
def find_embeddings(self, img: np.ndarray) -> list:
|
||||
def find_embeddings(self, img: np.ndarray) -> List[float]:
|
||||
"""
|
||||
Custom find embeddings function of SFace different than FacialRecognition's one
|
||||
find embeddings with SFace model - different than regular models
|
||||
Args:
|
||||
img (np.ndarray)
|
||||
Retunrs:
|
||||
embeddings (list)
|
||||
img (np.ndarray): pre-loaded image in BGR
|
||||
Returns
|
||||
embeddings (list): multi-dimensional vector
|
||||
"""
|
||||
return self.model.predict(img)[0].tolist()
|
||||
# return self.model.predict(img)[0].tolist()
|
||||
|
||||
# revert the image to original format and preprocess using the model
|
||||
input_blob = (img[0] * 255).astype(np.uint8)
|
||||
|
||||
embeddings = self.model.model.feature(input_blob)
|
||||
|
||||
return embeddings[0].tolist()
|
||||
|
||||
|
||||
def load_model(
|
||||
@ -74,17 +81,6 @@ class SFaceWrapper:
|
||||
|
||||
self.layers = [_Layer()]
|
||||
|
||||
def predict(self, image: np.ndarray) -> np.ndarray:
|
||||
# Preprocess
|
||||
input_blob = (image[0] * 255).astype(
|
||||
np.uint8
|
||||
) # revert the image to original format and preprocess using the model
|
||||
|
||||
# Forward
|
||||
embeddings = self.model.feature(input_blob)
|
||||
|
||||
return embeddings
|
||||
|
||||
|
||||
class _Layer:
|
||||
input_shape = (None, 112, 112, 3)
|
||||
|
@ -1,5 +1,7 @@
|
||||
from typing import List
|
||||
import os
|
||||
import gdown
|
||||
import numpy as np
|
||||
from deepface.commons import functions
|
||||
from deepface.commons.logger import Logger
|
||||
from deepface.models.FacialRecognition import FacialRecognition
|
||||
@ -37,7 +39,7 @@ else:
|
||||
# ---------------------------------------
|
||||
|
||||
# pylint: disable=too-few-public-methods
|
||||
class VggFace(FacialRecognition):
|
||||
class VggFaceClient(FacialRecognition):
|
||||
"""
|
||||
VGG-Face model class
|
||||
"""
|
||||
@ -46,6 +48,18 @@ class VggFace(FacialRecognition):
|
||||
self.model = load_model()
|
||||
self.model_name = "VGG-Face"
|
||||
|
||||
def find_embeddings(self, img: np.ndarray) -> List[float]:
|
||||
"""
|
||||
find embeddings with VGG-Face model
|
||||
Args:
|
||||
img (np.ndarray): pre-loaded image in BGR
|
||||
Returns
|
||||
embeddings (list): multi-dimensional vector
|
||||
"""
|
||||
# model.predict causes memory issue when it is called in a for loop
|
||||
# embedding = model.predict(img, verbose=0)[0].tolist()
|
||||
return self.model(img, training=False).numpy()[0].tolist()
|
||||
|
||||
|
||||
def base_model() -> Sequential:
|
||||
"""
|
||||
|
@ -1,5 +1,5 @@
|
||||
import os
|
||||
from typing import Union, Tuple
|
||||
from typing import Union, Tuple, List
|
||||
import base64
|
||||
from pathlib import Path
|
||||
|
||||
@ -140,9 +140,9 @@ def extract_faces(
|
||||
grayscale: bool = False,
|
||||
enforce_detection: bool = True,
|
||||
align: bool = True,
|
||||
) -> list:
|
||||
"""Extract faces from an image.
|
||||
|
||||
) -> List[Tuple[np.ndarray, dict, float]]:
|
||||
"""
|
||||
Extract faces from an image.
|
||||
Args:
|
||||
img: a path, url, base64 or numpy array.
|
||||
target_size (tuple, optional): the target size of the extracted faces.
|
||||
@ -157,7 +157,12 @@ def extract_faces(
|
||||
ValueError: if face could not be detected and enforce_detection is True.
|
||||
|
||||
Returns:
|
||||
list: a list of extracted faces.
|
||||
results (List[Tuple[np.ndarray, dict, float]]): A list of tuples
|
||||
where each tuple contains:
|
||||
- detected_face (np.ndarray): The detected face as a NumPy array.
|
||||
- face_region (dict): The image region represented as
|
||||
{"x": x, "y": y, "w": w, "h": h}
|
||||
- confidence (float): The confidence score associated with the detected face.
|
||||
"""
|
||||
|
||||
# this is going to store a list of img itself (numpy), it region and confidence
|
||||
@ -246,7 +251,7 @@ def extract_faces(
|
||||
"h": int(current_region[3]),
|
||||
}
|
||||
|
||||
extracted_face = [img_pixels, region_obj, confidence]
|
||||
extracted_face = (img_pixels, region_obj, confidence)
|
||||
extracted_faces.append(extracted_face)
|
||||
|
||||
if len(extracted_faces) == 0 and enforce_detection == True:
|
||||
|
@ -2,15 +2,15 @@ from typing import Any
|
||||
import numpy as np
|
||||
from deepface.models.Detector import Detector
|
||||
from deepface.detectors import (
|
||||
OpenCvWrapper,
|
||||
SsdWrapper,
|
||||
DlibWrapper,
|
||||
MtcnnWrapper,
|
||||
RetinaFaceWrapper,
|
||||
MediapipeWrapper,
|
||||
YoloWrapper,
|
||||
YunetWrapper,
|
||||
FastMtcnnWrapper,
|
||||
FastMtCnn,
|
||||
MediaPipe,
|
||||
MtCnn,
|
||||
OpenCv,
|
||||
Dlib,
|
||||
RetinaFace,
|
||||
Ssd,
|
||||
Yolo,
|
||||
YuNet,
|
||||
)
|
||||
|
||||
|
||||
@ -25,15 +25,15 @@ def build_model(detector_backend: str) -> Any:
|
||||
global face_detector_obj # singleton design pattern
|
||||
|
||||
backends = {
|
||||
"opencv": OpenCvWrapper.OpenCv,
|
||||
"mtcnn": MtcnnWrapper.MtCnn,
|
||||
"ssd": SsdWrapper.Ssd,
|
||||
"dlib": DlibWrapper.Dlib,
|
||||
"retinaface": RetinaFaceWrapper.RetinaFace,
|
||||
"mediapipe": MediapipeWrapper.MediaPipe,
|
||||
"yolov8": YoloWrapper.Yolo,
|
||||
"yunet": YunetWrapper.YuNet,
|
||||
"fastmtcnn": FastMtcnnWrapper.FastMtCnn,
|
||||
"opencv": OpenCv.OpenCvClient,
|
||||
"mtcnn": MtCnn.MtCnnClient,
|
||||
"ssd": Ssd.SsdClient,
|
||||
"dlib": Dlib.DlibClient,
|
||||
"retinaface": RetinaFace.RetinaFaceClient,
|
||||
"mediapipe": MediaPipe.MediaPipeClient,
|
||||
"yolov8": Yolo.YoloClient,
|
||||
"yunet": YuNet.YuNetClient,
|
||||
"fastmtcnn": FastMtCnn.FastMtCnnClient,
|
||||
}
|
||||
|
||||
if not "face_detector_obj" in globals():
|
||||
@ -59,9 +59,20 @@ def detect_faces(detector_backend: str, img: np.ndarray, align: bool = True) ->
|
||||
detector_backend (str): detector name
|
||||
img (np.ndarray): pre-loaded image
|
||||
alig (bool): enable or disable alignment after detection
|
||||
Returns
|
||||
result (list): tuple of face (np.ndarray), face region (list)
|
||||
, confidence score (float)
|
||||
Returns:
|
||||
results (List[Tuple[np.ndarray, List[float], float]]): A list of tuples
|
||||
where each tuple contains:
|
||||
- detected_face (np.ndarray): The detected face as a NumPy array.
|
||||
- face_region (List[float]): The image region represented as
|
||||
a list of floats e.g. [x, y, w, h]
|
||||
- confidence (float): The confidence score associated with the detected face.
|
||||
|
||||
Example:
|
||||
results = [
|
||||
(array(..., dtype=uint8), [110, 60, 150, 380], 0.99),
|
||||
(array(..., dtype=uint8), [150, 50, 299, 375], 0.98),
|
||||
(array(..., dtype=uint8), [120, 55, 300, 371], 0.96),
|
||||
]
|
||||
"""
|
||||
face_detector: Detector = build_model(detector_backend)
|
||||
return face_detector.detect_faces(img=img, align=align)
|
||||
|
@ -1,3 +1,4 @@
|
||||
from typing import List, Tuple
|
||||
import os
|
||||
import bz2
|
||||
import gdown
|
||||
@ -9,7 +10,7 @@ from deepface.commons.logger import Logger
|
||||
logger = Logger(module="detectors.DlibWrapper")
|
||||
|
||||
|
||||
class Dlib(Detector):
|
||||
class DlibClient(Detector):
|
||||
def __init__(self):
|
||||
self.model = self.build_model()
|
||||
|
||||
@ -55,7 +56,9 @@ class Dlib(Detector):
|
||||
detector["sp"] = sp
|
||||
return detector
|
||||
|
||||
def detect_faces(self, img: np.ndarray, align: bool = True) -> list:
|
||||
def detect_faces(
|
||||
self, img: np.ndarray, align: bool = True
|
||||
) -> List[Tuple[np.ndarray, List[float], float]]:
|
||||
"""
|
||||
Detect and align face with dlib
|
||||
Args:
|
||||
@ -63,7 +66,19 @@ class Dlib(Detector):
|
||||
img (np.ndarray): pre-loaded image
|
||||
align (bool): default is true
|
||||
Returns:
|
||||
list of detected and aligned faces
|
||||
results (List[Tuple[np.ndarray, List[float], float]]): A list of tuples
|
||||
where each tuple contains:
|
||||
- detected_face (np.ndarray): The detected face as a NumPy array.
|
||||
- face_region (List[float]): The image region represented as
|
||||
a list of floats e.g. [x, y, w, h]
|
||||
- confidence (float): The confidence score associated with the detected face.
|
||||
|
||||
Example:
|
||||
results = [
|
||||
(array(..., dtype=uint8), [110, 60, 150, 380], 0.99),
|
||||
(array(..., dtype=uint8), [150, 50, 299, 375], 0.98),
|
||||
(array(..., dtype=uint8), [120, 55, 300, 371], 0.96),
|
||||
]
|
||||
"""
|
||||
# this is not a must dependency. do not import it in the global level.
|
||||
try:
|
@ -1,24 +1,39 @@
|
||||
from typing import Any, Union
|
||||
from typing import Any, Union, List, Tuple
|
||||
import cv2
|
||||
import numpy as np
|
||||
from deepface.models.Detector import Detector
|
||||
from deepface.modules import detection
|
||||
|
||||
# Link -> https://github.com/timesler/facenet-pytorch
|
||||
# Examples https://www.kaggle.com/timesler/guide-to-mtcnn-in-facenet-pytorch
|
||||
|
||||
|
||||
class FastMtCnn(Detector):
|
||||
class FastMtCnnClient(Detector):
|
||||
def __init__(self):
|
||||
self.model = self.build_model()
|
||||
|
||||
def detect_faces(self, img: np.ndarray, align: bool = True) -> list:
|
||||
def detect_faces(
|
||||
self, img: np.ndarray, align: bool = True
|
||||
) -> List[Tuple[np.ndarray, List[float], float]]:
|
||||
"""
|
||||
Detect and align face with mtcnn
|
||||
Args:
|
||||
img (np.ndarray): pre-loaded image
|
||||
align (bool): default is true
|
||||
Returns:
|
||||
list of detected and aligned faces
|
||||
results (List[Tuple[np.ndarray, List[float], float]]): A list of tuples
|
||||
where each tuple contains:
|
||||
- detected_face (np.ndarray): The detected face as a NumPy array.
|
||||
- face_region (List[float]): The image region represented as
|
||||
a list of floats e.g. [x, y, w, h]
|
||||
- confidence (float): The confidence score associated with the detected face.
|
||||
|
||||
Example:
|
||||
results = [
|
||||
(array(..., dtype=uint8), [110, 60, 150, 380], 0.99),
|
||||
(array(..., dtype=uint8), [150, 50, 299, 375], 0.98),
|
||||
(array(..., dtype=uint8), [120, 55, 300, 371], 0.96),
|
||||
]
|
||||
"""
|
||||
resp = []
|
||||
|
||||
@ -31,16 +46,16 @@ class FastMtCnn(Detector):
|
||||
) # returns boundingbox, prob, landmark
|
||||
if len(detections[0]) > 0:
|
||||
|
||||
for detection in zip(*detections):
|
||||
x, y, w, h = xyxy_to_xywh(detection[0])
|
||||
for current_detection in zip(*detections):
|
||||
x, y, w, h = xyxy_to_xywh(current_detection[0])
|
||||
detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
|
||||
img_region = [x, y, w, h]
|
||||
confidence = detection[1]
|
||||
confidence = current_detection[1]
|
||||
|
||||
if align:
|
||||
left_eye = detection[2][0]
|
||||
right_eye = detection[2][1]
|
||||
detected_face = self.align_face(
|
||||
left_eye = current_detection[2][0]
|
||||
right_eye = current_detection[2][1]
|
||||
detected_face = detection.align_face(
|
||||
img=detected_face, left_eye=left_eye, right_eye=right_eye
|
||||
)
|
||||
|
@ -1,11 +1,12 @@
|
||||
from typing import Any
|
||||
from typing import Any, List, Tuple
|
||||
import numpy as np
|
||||
from deepface.models.Detector import Detector
|
||||
from deepface.modules import detection
|
||||
|
||||
# Link - https://google.github.io/mediapipe/solutions/face_detection
|
||||
|
||||
|
||||
class MediaPipe(Detector):
|
||||
class MediaPipeClient(Detector):
|
||||
def __init__(self):
|
||||
self.model = self.build_model()
|
||||
|
||||
@ -28,14 +29,28 @@ class MediaPipe(Detector):
|
||||
face_detection = mp_face_detection.FaceDetection(min_detection_confidence=0.7)
|
||||
return face_detection
|
||||
|
||||
def detect_faces(self, img: np.ndarray, align: bool = True) -> list:
|
||||
def detect_faces(
|
||||
self, img: np.ndarray, align: bool = True
|
||||
) -> List[Tuple[np.ndarray, List[float], float]]:
|
||||
"""
|
||||
Detect and align face with mediapipe
|
||||
Args:
|
||||
img (np.ndarray): pre-loaded image
|
||||
align (bool): default is true
|
||||
Returns:
|
||||
list of detected and aligned faces
|
||||
results (List[Tuple[np.ndarray, List[float], float]]): A list of tuples
|
||||
where each tuple contains:
|
||||
- detected_face (np.ndarray): The detected face as a NumPy array.
|
||||
- face_region (List[float]): The image region represented as
|
||||
a list of floats e.g. [x, y, w, h]
|
||||
- confidence (float): The confidence score associated with the detected face.
|
||||
|
||||
Example:
|
||||
results = [
|
||||
(array(..., dtype=uint8), [110, 60, 150, 380], 0.99),
|
||||
(array(..., dtype=uint8), [150, 50, 299, 375], 0.98),
|
||||
(array(..., dtype=uint8), [120, 55, 300, 371], 0.96),
|
||||
]
|
||||
"""
|
||||
resp = []
|
||||
|
||||
@ -49,11 +64,11 @@ class MediaPipe(Detector):
|
||||
return resp
|
||||
|
||||
# Extract the bounding box, the landmarks and the confidence score
|
||||
for detection in results.detections:
|
||||
(confidence,) = detection.score
|
||||
for current_detection in results.detections:
|
||||
(confidence,) = current_detection.score
|
||||
|
||||
bounding_box = detection.location_data.relative_bounding_box
|
||||
landmarks = detection.location_data.relative_keypoints
|
||||
bounding_box = current_detection.location_data.relative_bounding_box
|
||||
landmarks = current_detection.location_data.relative_keypoints
|
||||
|
||||
x = int(bounding_box.xmin * img_width)
|
||||
w = int(bounding_box.width * img_width)
|
||||
@ -73,7 +88,7 @@ class MediaPipe(Detector):
|
||||
img_region = [x, y, w, h]
|
||||
|
||||
if align:
|
||||
detected_face = self.align_face(
|
||||
detected_face = detection.align_face(
|
||||
img=detected_face, left_eye=left_eye, right_eye=right_eye
|
||||
)
|
||||
|
67
deepface/detectors/MtCnn.py
Normal file
67
deepface/detectors/MtCnn.py
Normal file
@ -0,0 +1,67 @@
|
||||
from typing import List, Tuple
|
||||
import cv2
|
||||
import numpy as np
|
||||
from mtcnn import MTCNN
|
||||
from deepface.models.Detector import Detector
|
||||
from deepface.modules import detection
|
||||
|
||||
# pylint: disable=too-few-public-methods
|
||||
class MtCnnClient(Detector):
|
||||
"""
|
||||
Class to cover common face detection functionalitiy for MtCnn backend
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self.model = MTCNN()
|
||||
|
||||
def detect_faces(
|
||||
self, img: np.ndarray, align: bool = True
|
||||
) -> List[Tuple[np.ndarray, List[float], float]]:
|
||||
"""
|
||||
Detect and align face with mtcnn
|
||||
Args:
|
||||
img (np.ndarray): pre-loaded image
|
||||
align (bool): default is true
|
||||
Returns:
|
||||
results (List[Tuple[np.ndarray, List[float], float]]): A list of tuples
|
||||
where each tuple contains:
|
||||
- detected_face (np.ndarray): The detected face as a NumPy array.
|
||||
- face_region (List[float]): The image region represented as
|
||||
a list of floats e.g. [x, y, w, h]
|
||||
- confidence (float): The confidence score associated with the detected face.
|
||||
|
||||
Example:
|
||||
results = [
|
||||
(array(..., dtype=uint8), [110, 60, 150, 380], 0.99),
|
||||
(array(..., dtype=uint8), [150, 50, 299, 375], 0.98),
|
||||
(array(..., dtype=uint8), [120, 55, 300, 371], 0.96),
|
||||
]
|
||||
"""
|
||||
|
||||
resp = []
|
||||
|
||||
detected_face = None
|
||||
img_region = [0, 0, img.shape[1], img.shape[0]]
|
||||
|
||||
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # mtcnn expects RGB but OpenCV read BGR
|
||||
detections = self.model.detect_faces(img_rgb)
|
||||
|
||||
if len(detections) > 0:
|
||||
|
||||
for current_detection in detections:
|
||||
x, y, w, h = current_detection["box"]
|
||||
detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
|
||||
img_region = [x, y, w, h]
|
||||
confidence = current_detection["confidence"]
|
||||
|
||||
if align:
|
||||
keypoints = current_detection["keypoints"]
|
||||
left_eye = keypoints["left_eye"]
|
||||
right_eye = keypoints["right_eye"]
|
||||
detected_face = detection.align_face(
|
||||
img=detected_face, left_eye=left_eye, right_eye=right_eye
|
||||
)
|
||||
|
||||
resp.append((detected_face, img_region, confidence))
|
||||
|
||||
return resp
|
@ -1,51 +0,0 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
from mtcnn import MTCNN
|
||||
from deepface.models.Detector import Detector
|
||||
|
||||
|
||||
class MtCnn(Detector):
|
||||
"""
|
||||
Class to cover common face detection functionalitiy for MtCnn backend
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self.model = MTCNN()
|
||||
|
||||
def detect_faces(self, img: np.ndarray, align: bool = True) -> list:
|
||||
"""
|
||||
Detect and align face with mtcnn
|
||||
Args:
|
||||
img (np.ndarray): pre-loaded image
|
||||
align (bool): default is true
|
||||
Returns:
|
||||
list of detected and aligned faces
|
||||
"""
|
||||
|
||||
resp = []
|
||||
|
||||
detected_face = None
|
||||
img_region = [0, 0, img.shape[1], img.shape[0]]
|
||||
|
||||
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # mtcnn expects RGB but OpenCV read BGR
|
||||
detections = self.model.detect_faces(img_rgb)
|
||||
|
||||
if len(detections) > 0:
|
||||
|
||||
for detection in detections:
|
||||
x, y, w, h = detection["box"]
|
||||
detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
|
||||
img_region = [x, y, w, h]
|
||||
confidence = detection["confidence"]
|
||||
|
||||
if align:
|
||||
keypoints = detection["keypoints"]
|
||||
left_eye = keypoints["left_eye"]
|
||||
right_eye = keypoints["right_eye"]
|
||||
detected_face = self.align_face(
|
||||
img=detected_face, left_eye=left_eye, right_eye=right_eye
|
||||
)
|
||||
|
||||
resp.append((detected_face, img_region, confidence))
|
||||
|
||||
return resp
|
@ -1,11 +1,12 @@
|
||||
import os
|
||||
from typing import Any
|
||||
from typing import Any, List, Tuple
|
||||
import cv2
|
||||
import numpy as np
|
||||
from deepface.models.Detector import Detector
|
||||
from deepface.modules import detection
|
||||
|
||||
|
||||
class OpenCv(Detector):
|
||||
class OpenCvClient(Detector):
|
||||
"""
|
||||
Class to cover common face detection functionalitiy for OpenCv backend
|
||||
"""
|
||||
@ -24,7 +25,9 @@ class OpenCv(Detector):
|
||||
detector["eye_detector"] = self.__build_cascade("haarcascade_eye")
|
||||
return detector
|
||||
|
||||
def detect_faces(self, img: np.ndarray, align: bool = True) -> list:
|
||||
def detect_faces(
|
||||
self, img: np.ndarray, align: bool = True
|
||||
) -> List[Tuple[np.ndarray, List[float], float]]:
|
||||
"""
|
||||
Detect and align face with opencv
|
||||
Args:
|
||||
@ -32,7 +35,19 @@ class OpenCv(Detector):
|
||||
img (np.ndarray): pre-loaded image
|
||||
align (bool): default is true
|
||||
Returns:
|
||||
list of detected and aligned faces
|
||||
results (List[Tuple[np.ndarray, List[float], float]]): A list of tuples
|
||||
where each tuple contains:
|
||||
- detected_face (np.ndarray): The detected face as a NumPy array.
|
||||
- face_region (List[float]): The image region represented as
|
||||
a list of floats e.g. [x, y, w, h]
|
||||
- confidence (float): The confidence score associated with the detected face.
|
||||
|
||||
Example:
|
||||
results = [
|
||||
(array(..., dtype=uint8), [110, 60, 150, 380], 0.99),
|
||||
(array(..., dtype=uint8), [150, 50, 299, 375], 0.98),
|
||||
(array(..., dtype=uint8), [120, 55, 300, 371], 0.96),
|
||||
]
|
||||
"""
|
||||
resp = []
|
||||
|
||||
@ -56,7 +71,7 @@ class OpenCv(Detector):
|
||||
|
||||
if align:
|
||||
left_eye, right_eye = self.find_eyes(img=detected_face)
|
||||
detected_face = self.align_face(detected_face, left_eye, right_eye)
|
||||
detected_face = detection.align_face(detected_face, left_eye, right_eye)
|
||||
|
||||
img_region = [x, y, w, h]
|
||||
|
@ -1,21 +1,36 @@
|
||||
from typing import List, Tuple
|
||||
import numpy as np
|
||||
from retinaface import RetinaFace as rf
|
||||
from retinaface.commons import postprocess
|
||||
from deepface.models.Detector import Detector
|
||||
|
||||
|
||||
class RetinaFace(Detector):
|
||||
# pylint: disable=too-few-public-methods
|
||||
class RetinaFaceClient(Detector):
|
||||
def __init__(self):
|
||||
self.model = rf.build_model()
|
||||
|
||||
def detect_faces(self, img: np.ndarray, align: bool = True) -> list:
|
||||
def detect_faces(
|
||||
self, img: np.ndarray, align: bool = True
|
||||
) -> List[Tuple[np.ndarray, List[float], float]]:
|
||||
"""
|
||||
Detect and align face with retinaface
|
||||
Args:
|
||||
img (np.ndarray): pre-loaded image
|
||||
align (bool): default is true
|
||||
Returns:
|
||||
list of detected and aligned faces
|
||||
results (List[Tuple[np.ndarray, List[float], float]]): A list of tuples
|
||||
where each tuple contains:
|
||||
- detected_face (np.ndarray): The detected face as a NumPy array.
|
||||
- face_region (List[float]): The image region represented as
|
||||
a list of floats e.g. [x, y, w, h]
|
||||
- confidence (float): The confidence score associated with the detected face.
|
||||
|
||||
Example:
|
||||
results = [
|
||||
(array(..., dtype=uint8), [110, 60, 150, 380], 0.99),
|
||||
(array(..., dtype=uint8), [150, 50, 299, 375], 0.98),
|
||||
(array(..., dtype=uint8), [120, 55, 300, 371], 0.96),
|
||||
]
|
||||
"""
|
||||
resp = []
|
||||
|
@ -1,11 +1,13 @@
|
||||
from typing import List, Tuple
|
||||
import os
|
||||
import gdown
|
||||
import cv2
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from deepface.detectors import OpenCvWrapper
|
||||
from deepface.detectors import OpenCv
|
||||
from deepface.commons import functions
|
||||
from deepface.models.Detector import Detector
|
||||
from deepface.modules import detection
|
||||
from deepface.commons.logger import Logger
|
||||
|
||||
logger = Logger(module="detectors.SsdWrapper")
|
||||
@ -13,7 +15,7 @@ logger = Logger(module="detectors.SsdWrapper")
|
||||
# pylint: disable=line-too-long
|
||||
|
||||
|
||||
class Ssd(Detector):
|
||||
class SsdClient(Detector):
|
||||
def __init__(self):
|
||||
self.model = self.build_model()
|
||||
|
||||
@ -65,18 +67,32 @@ class Ssd(Detector):
|
||||
|
||||
detector = {}
|
||||
detector["face_detector"] = face_detector
|
||||
detector["opencv_module"] = OpenCvWrapper.OpenCv()
|
||||
detector["opencv_module"] = OpenCv.OpenCvClient()
|
||||
|
||||
return detector
|
||||
|
||||
def detect_faces(self, img: np.ndarray, align: bool = True) -> list:
|
||||
def detect_faces(
|
||||
self, img: np.ndarray, align: bool = True
|
||||
) -> List[Tuple[np.ndarray, List[float], float]]:
|
||||
"""
|
||||
Detect and align face with ssd
|
||||
Args:
|
||||
img (np.ndarray): pre-loaded image
|
||||
align (bool): default is true
|
||||
Returns:
|
||||
list of detected and aligned faces
|
||||
results (List[Tuple[np.ndarray, List[float], float]]): A list of tuples
|
||||
where each tuple contains:
|
||||
- detected_face (np.ndarray): The detected face as a NumPy array.
|
||||
- face_region (List[float]): The image region represented as
|
||||
a list of floats e.g. [x, y, w, h]
|
||||
- confidence (float): The confidence score associated with the detected face.
|
||||
|
||||
Example:
|
||||
results = [
|
||||
(array(..., dtype=uint8), [110, 60, 150, 380], 0.99),
|
||||
(array(..., dtype=uint8), [150, 50, 299, 375], 0.98),
|
||||
(array(..., dtype=uint8), [120, 55, 300, 371], 0.96),
|
||||
]
|
||||
"""
|
||||
resp = []
|
||||
|
||||
@ -134,9 +150,9 @@ class Ssd(Detector):
|
||||
confidence = instance["confidence"]
|
||||
|
||||
if align:
|
||||
opencv_module: OpenCvWrapper.OpenCv = self.model["opencv_module"]
|
||||
opencv_module: OpenCv.OpenCvClient = self.model["opencv_module"]
|
||||
left_eye, right_eye = opencv_module.find_eyes(detected_face)
|
||||
detected_face = self.align_face(
|
||||
detected_face = detection.align_face(
|
||||
img=detected_face, left_eye=left_eye, right_eye=right_eye
|
||||
)
|
||||
|
@ -1,6 +1,7 @@
|
||||
from typing import Any
|
||||
from typing import Any, List, Tuple
|
||||
import numpy as np
|
||||
from deepface.models.Detector import Detector
|
||||
from deepface.modules import detection
|
||||
from deepface.commons.logger import Logger
|
||||
|
||||
logger = Logger()
|
||||
@ -16,7 +17,7 @@ WEIGHT_URL = "https://drive.google.com/uc?id=1qcr9DbgsX3ryrz2uU8w4Xm3cOrRywXqb"
|
||||
LANDMARKS_CONFIDENCE_THRESHOLD = 0.5
|
||||
|
||||
|
||||
class Yolo(Detector):
|
||||
class YoloClient(Detector):
|
||||
def __init__(self):
|
||||
self.model = self.build_model()
|
||||
|
||||
@ -50,7 +51,9 @@ class Yolo(Detector):
|
||||
# Return face_detector
|
||||
return YOLO(weight_path)
|
||||
|
||||
def detect_faces(self, img: np.ndarray, align: bool = False) -> list:
|
||||
def detect_faces(
|
||||
self, img: np.ndarray, align: bool = False
|
||||
) -> List[Tuple[np.ndarray, List[float], float]]:
|
||||
"""
|
||||
Detect and align face with yolo
|
||||
Args:
|
||||
@ -58,7 +61,19 @@ class Yolo(Detector):
|
||||
img (np.ndarray): pre-loaded image
|
||||
align (bool): default is true
|
||||
Returns:
|
||||
list of detected and aligned faces
|
||||
results (List[Tuple[np.ndarray, List[float], float]]): A list of tuples
|
||||
where each tuple contains:
|
||||
- detected_face (np.ndarray): The detected face as a NumPy array.
|
||||
- face_region (List[float]): The image region represented as
|
||||
a list of floats e.g. [x, y, w, h]
|
||||
- confidence (float): The confidence score associated with the detected face.
|
||||
|
||||
Example:
|
||||
results = [
|
||||
(array(..., dtype=uint8), [110, 60, 150, 380], 0.99),
|
||||
(array(..., dtype=uint8), [150, 50, 299, 375], 0.98),
|
||||
(array(..., dtype=uint8), [120, 55, 300, 371], 0.96),
|
||||
]
|
||||
"""
|
||||
resp = []
|
||||
|
||||
@ -85,7 +100,7 @@ class Yolo(Detector):
|
||||
left_eye[1] > LANDMARKS_CONFIDENCE_THRESHOLD
|
||||
and right_eye[1] > LANDMARKS_CONFIDENCE_THRESHOLD
|
||||
):
|
||||
detected_face = self.align_face(
|
||||
detected_face = detection.align_face(
|
||||
img=detected_face, left_eye=left_eye[0].cpu(), right_eye=right_eye[0].cpu()
|
||||
)
|
||||
resp.append((detected_face, [x, y, w, h], confidence))
|
@ -1,16 +1,17 @@
|
||||
import os
|
||||
from typing import Any
|
||||
from typing import Any, List, Tuple
|
||||
import cv2
|
||||
import numpy as np
|
||||
import gdown
|
||||
from deepface.commons import functions
|
||||
from deepface.commons.logger import Logger
|
||||
from deepface.models.Detector import Detector
|
||||
from deepface.modules import detection
|
||||
from deepface.commons.logger import Logger
|
||||
|
||||
logger = Logger(module="detectors.YunetWrapper")
|
||||
|
||||
|
||||
class YuNet(Detector):
|
||||
class YuNetClient(Detector):
|
||||
def __init__(self):
|
||||
self.model = self.build_model()
|
||||
|
||||
@ -41,14 +42,28 @@ class YuNet(Detector):
|
||||
) from err
|
||||
return face_detector
|
||||
|
||||
def detect_faces(self, img: np.ndarray, align: bool = True) -> list:
|
||||
def detect_faces(
|
||||
self, img: np.ndarray, align: bool = True
|
||||
) -> List[Tuple[np.ndarray, List[float], float]]:
|
||||
"""
|
||||
Detect and align face with yunet
|
||||
Args:
|
||||
img (np.ndarray): pre-loaded image
|
||||
align (bool): default is true
|
||||
Returns:
|
||||
list of detected and aligned faces
|
||||
results (List[Tuple[np.ndarray, List[float], float]]): A list of tuples
|
||||
where each tuple contains:
|
||||
- detected_face (np.ndarray): The detected face as a NumPy array.
|
||||
- face_region (List[float]): The image region represented as
|
||||
a list of floats e.g. [x, y, w, h]
|
||||
- confidence (float): The confidence score associated with the detected face.
|
||||
|
||||
Example:
|
||||
results = [
|
||||
(array(..., dtype=uint8), [110, 60, 150, 380], 0.99),
|
||||
(array(..., dtype=uint8), [150, 50, 299, 375], 0.98),
|
||||
(array(..., dtype=uint8), [120, 55, 300, 371], 0.96),
|
||||
]
|
||||
"""
|
||||
# FaceDetector.detect_faces does not support score_threshold parameter.
|
||||
# We can set it via environment variable.
|
||||
@ -107,6 +122,6 @@ class YuNet(Detector):
|
||||
detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
|
||||
img_region = [x, y, w, h]
|
||||
if align:
|
||||
detected_face = self.align_face(detected_face, (x_re, y_re), (x_le, y_le))
|
||||
detected_face = detection.align_face(detected_face, (x_re, y_re), (x_le, y_le))
|
||||
resp.append((detected_face, img_region, confidence))
|
||||
return resp
|
@ -23,7 +23,7 @@ else:
|
||||
# ----------------------------------------
|
||||
|
||||
# pylint: disable=too-few-public-methods
|
||||
class ApparentAge(Demography):
|
||||
class ApparentAgeClient(Demography):
|
||||
"""
|
||||
Age model class
|
||||
"""
|
||||
|
@ -33,7 +33,7 @@ else:
|
||||
labels = ["angry", "disgust", "fear", "happy", "sad", "surprise", "neutral"]
|
||||
|
||||
# pylint: disable=too-few-public-methods
|
||||
class FacialExpression(Demography):
|
||||
class EmotionClient(Demography):
|
||||
"""
|
||||
Emotion model class
|
||||
"""
|
||||
|
@ -26,7 +26,7 @@ else:
|
||||
labels = ["Woman", "Man"]
|
||||
|
||||
# pylint: disable=too-few-public-methods
|
||||
class Gender(Demography):
|
||||
class GenderClient(Demography):
|
||||
"""
|
||||
Gender model class
|
||||
"""
|
||||
|
@ -25,7 +25,7 @@ else:
|
||||
labels = ["asian", "indian", "black", "white", "middle eastern", "latino hispanic"]
|
||||
|
||||
# pylint: disable=too-few-public-methods
|
||||
class Race(Demography):
|
||||
class RaceClient(Demography):
|
||||
"""
|
||||
Race model class
|
||||
"""
|
||||
|
@ -1,39 +1,34 @@
|
||||
from typing import List, Tuple
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Union
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
# Notice that all facial detector models must be inherited from this class
|
||||
|
||||
|
||||
# pylint: disable=unnecessary-pass, too-few-public-methods
|
||||
class Detector(ABC):
|
||||
@abstractmethod
|
||||
def detect_faces(self, img: np.ndarray, align: bool = True) -> list:
|
||||
pass
|
||||
|
||||
def align_face(
|
||||
self, img: np.ndarray, left_eye: Union[list, tuple], right_eye: Union[list, tuple]
|
||||
) -> np.ndarray:
|
||||
def detect_faces(
|
||||
self, img: np.ndarray, align: bool = True
|
||||
) -> List[Tuple[np.ndarray, List[float], float]]:
|
||||
"""
|
||||
Align a given image horizantally with respect to their left and right eye locations
|
||||
Detect faces from a given image
|
||||
Args:
|
||||
img (np.ndarray): pre-loaded image with detected face
|
||||
left_eye (list or tuple): coordinates of left eye with respect to the you
|
||||
right_eye(list or tuple): coordinates of right eye with respect to the you
|
||||
img (np.ndarray): pre-loaded image as a NumPy array
|
||||
align (bool): enable or disable alignment after face detection
|
||||
Returns:
|
||||
img (np.ndarray): aligned facial image
|
||||
results (List[Tuple[np.ndarray, List[float], float]]): A list of tuples
|
||||
where each tuple contains:
|
||||
- detected_face (np.ndarray): The detected face as a NumPy array.
|
||||
- face_region (List[float]): The image region represented as
|
||||
a list of floats e.g. [x, y, w, h]
|
||||
- confidence (float): The confidence score associated with the detected face.
|
||||
|
||||
Example:
|
||||
results = [
|
||||
(array(..., dtype=uint8), [110, 60, 150, 380], 0.99),
|
||||
(array(..., dtype=uint8), [150, 50, 299, 375], 0.98),
|
||||
(array(..., dtype=uint8), [120, 55, 300, 371], 0.96),
|
||||
]
|
||||
"""
|
||||
# if eye could not be detected for the given image, return image itself
|
||||
if left_eye is None or right_eye is None:
|
||||
return img
|
||||
|
||||
# sometimes unexpectedly detected images come with nil dimensions
|
||||
if img.shape[0] == 0 or img.shape[1] == 0:
|
||||
return img
|
||||
|
||||
angle = float(
|
||||
np.degrees(np.arctan2(right_eye[1] - left_eye[1], right_eye[0] - left_eye[0]))
|
||||
)
|
||||
img = Image.fromarray(img)
|
||||
img = np.array(img.rotate(angle))
|
||||
return img
|
||||
pass
|
||||
|
@ -1,5 +1,5 @@
|
||||
from abc import ABC
|
||||
from typing import Any, Union
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Any, Union, List
|
||||
import numpy as np
|
||||
from deepface.commons import functions
|
||||
|
||||
@ -16,13 +16,6 @@ class FacialRecognition(ABC):
|
||||
model: Union[Model, Any]
|
||||
model_name: str
|
||||
|
||||
def find_embeddings(self, img: np.ndarray) -> list:
|
||||
if not isinstance(self.model, Model):
|
||||
raise ValueError(
|
||||
"If a facial recognition model is not type of (tf.)keras.models.Model,"
|
||||
"Then its find_embeddings method must be implemented its own module."
|
||||
f"However {self.model_name}'s model type is {type(self.model)}"
|
||||
)
|
||||
# model.predict causes memory issue when it is called in a for loop
|
||||
# embedding = model.predict(img, verbose=0)[0].tolist()
|
||||
return self.model(img, training=False).numpy()[0].tolist()
|
||||
@abstractmethod
|
||||
def find_embeddings(self, img: np.ndarray) -> List[float]:
|
||||
pass
|
||||
|
@ -3,6 +3,7 @@ from typing import Any, Dict, List, Tuple, Union
|
||||
|
||||
# 3rd part dependencies
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
# project dependencies
|
||||
from deepface.commons import functions
|
||||
@ -40,8 +41,11 @@ def extract_faces(
|
||||
grayscale (boolean): extracting faces in rgb or gray scale
|
||||
|
||||
Returns:
|
||||
list of dictionaries. Each dictionary will have facial image itself (RGB),
|
||||
extracted area from the original image and confidence score.
|
||||
results (List[Dict[str, Any]]): A list of dictionaries, where each dictionary contains:
|
||||
- "face" (np.ndarray): The detected face as a NumPy array.
|
||||
- "facial_area" (List[float]): The detected face's regions represented as a list of floats.
|
||||
- "confidence" (float): The confidence score associated with the detected face.
|
||||
|
||||
|
||||
"""
|
||||
|
||||
@ -70,3 +74,31 @@ def extract_faces(
|
||||
resp_objs.append(resp_obj)
|
||||
|
||||
return resp_objs
|
||||
|
||||
|
||||
def align_face(
|
||||
img: np.ndarray,
|
||||
left_eye: Union[list, tuple],
|
||||
right_eye: Union[list, tuple],
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Align a given image horizantally with respect to their left and right eye locations
|
||||
Args:
|
||||
img (np.ndarray): pre-loaded image with detected face
|
||||
left_eye (list or tuple): coordinates of left eye with respect to the you
|
||||
right_eye(list or tuple): coordinates of right eye with respect to the you
|
||||
Returns:
|
||||
img (np.ndarray): aligned facial image
|
||||
"""
|
||||
# if eye could not be detected for the given image, return image itself
|
||||
if left_eye is None or right_eye is None:
|
||||
return img
|
||||
|
||||
# sometimes unexpectedly detected images come with nil dimensions
|
||||
if img.shape[0] == 0 or img.shape[1] == 0:
|
||||
return img
|
||||
|
||||
angle = float(np.degrees(np.arctan2(right_eye[1] - left_eye[1], right_eye[0] - left_eye[0])))
|
||||
img = Image.fromarray(img)
|
||||
img = np.array(img.rotate(angle))
|
||||
return img
|
||||
|
@ -2,16 +2,7 @@
|
||||
from typing import Any
|
||||
|
||||
# project dependencies
|
||||
from deepface.basemodels import (
|
||||
VGGFace,
|
||||
OpenFace,
|
||||
Facenet,
|
||||
FbDeepFace,
|
||||
DeepID,
|
||||
DlibResNet,
|
||||
ArcFace,
|
||||
SFace,
|
||||
)
|
||||
from deepface.basemodels import VGGFace, OpenFace, FbDeepFace, DeepID, ArcFace, SFace, Dlib, Facenet
|
||||
from deepface.extendedmodels import Age, Gender, Race, Emotion
|
||||
|
||||
|
||||
@ -31,19 +22,19 @@ def build_model(model_name: str) -> Any:
|
||||
global model_obj
|
||||
|
||||
models = {
|
||||
"VGG-Face": VGGFace.VggFace,
|
||||
"OpenFace": OpenFace.OpenFace,
|
||||
"Facenet": Facenet.FaceNet128d,
|
||||
"Facenet512": Facenet.FaceNet512d,
|
||||
"DeepFace": FbDeepFace.DeepFace,
|
||||
"DeepID": DeepID.DeepId,
|
||||
"Dlib": DlibResNet.Dlib,
|
||||
"ArcFace": ArcFace.ArcFace,
|
||||
"SFace": SFace.SFace,
|
||||
"Emotion": Emotion.FacialExpression,
|
||||
"Age": Age.ApparentAge,
|
||||
"Gender": Gender.Gender,
|
||||
"Race": Race.Race,
|
||||
"VGG-Face": VGGFace.VggFaceClient,
|
||||
"OpenFace": OpenFace.OpenFaceClient,
|
||||
"Facenet": Facenet.FaceNet128dClient,
|
||||
"Facenet512": Facenet.FaceNet512dClient,
|
||||
"DeepFace": FbDeepFace.DeepFaceClient,
|
||||
"DeepID": DeepID.DeepIdClient,
|
||||
"Dlib": Dlib.DlibClient,
|
||||
"ArcFace": ArcFace.ArcFaceClient,
|
||||
"SFace": SFace.SFaceClient,
|
||||
"Emotion": Emotion.EmotionClient,
|
||||
"Age": Age.ApparentAgeClient,
|
||||
"Gender": Gender.GenderClient,
|
||||
"Race": Race.RaceClient,
|
||||
}
|
||||
|
||||
if not "model_obj" in globals():
|
||||
|
@ -14,11 +14,12 @@ model_names = [
|
||||
"Facenet512",
|
||||
"OpenFace",
|
||||
"DeepFace",
|
||||
"DeepID",
|
||||
# "DeepID",
|
||||
"Dlib",
|
||||
"ArcFace",
|
||||
"SFace",
|
||||
]
|
||||
|
||||
detector_backends = ["opencv", "ssd", "dlib", "mtcnn", "retinaface"]
|
||||
|
||||
|
||||
@ -44,10 +45,11 @@ dfs = DeepFace.find(
|
||||
for df in dfs:
|
||||
logger.info(df)
|
||||
|
||||
|
||||
# extract faces
|
||||
for detector_backend in detector_backends:
|
||||
face_objs = DeepFace.extract_faces(
|
||||
img_path="dataset/img1.jpg", detector_backend=detector_backend
|
||||
img_path="dataset/img11.jpg", detector_backend=detector_backend
|
||||
)
|
||||
for face_obj in face_objs:
|
||||
face = face_obj["face"]
|
||||
|
Loading…
x
Reference in New Issue
Block a user