mirror of
https://github.com/serengil/deepface.git
synced 2025-06-06 11:35:21 +00:00
Merge pull request #1383 from serengil/feat-task-0911-file-input-for-api
Feat task 0911 file input for api
This commit is contained in:
commit
c173ee619e
2
.github/workflows/tests.yml
vendored
2
.github/workflows/tests.yml
vendored
@ -37,6 +37,8 @@ jobs:
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install pytest
|
||||
# sending files in form data throwing error in flask 3 while running tests
|
||||
pip install Werkzeug==2.0.2 flask==2.0.2
|
||||
pip install .
|
||||
|
||||
- name: Test with pytest
|
||||
|
@ -341,7 +341,7 @@ cd scripts
|
||||
|
||||
<p align="center"><img src="https://raw.githubusercontent.com/serengil/deepface/master/icon/deepface-api.jpg" width="90%" height="90%"></p>
|
||||
|
||||
Face recognition, facial attribute analysis and vector representation functions are covered in the API. You are expected to call these functions as http post methods. Default service endpoints will be `http://localhost:5005/verify` for face recognition, `http://localhost:5005/analyze` for facial attribute analysis, and `http://localhost:5005/represent` for vector representation. You can pass input images as exact image paths on your environment, base64 encoded strings or images on web. [Here](https://github.com/serengil/deepface/tree/master/deepface/api/postman), you can find a postman project to find out how these methods should be called.
|
||||
Face recognition, facial attribute analysis and vector representation functions are covered in the API. You are expected to call these functions as http post methods. Default service endpoints will be `http://localhost:5005/verify` for face recognition, `http://localhost:5005/analyze` for facial attribute analysis, and `http://localhost:5005/represent` for vector representation. The API accepts images as file uploads (via form data), or as exact image paths, URLs, or base64-encoded strings (via either JSON or form data), providing versatile options for different client requirements. [Here](https://github.com/serengil/deepface/tree/master/deepface/api/postman), you can find a postman project to find out how these methods should be called.
|
||||
|
||||
**Dockerized Service** - [`Demo`](https://youtu.be/9Tk9lRQareA)
|
||||
|
||||
|
@ -1,12 +1,54 @@
|
||||
{
|
||||
"info": {
|
||||
"_postman_id": "4c0b144e-4294-4bdd-8072-bcb326b1fed2",
|
||||
"_postman_id": "26c5ee53-1f4b-41db-9342-3617c90059d3",
|
||||
"name": "deepface-api",
|
||||
"schema": "https://schema.getpostman.com/json/collection/v2.1.0/collection.json"
|
||||
},
|
||||
"item": [
|
||||
{
|
||||
"name": "Represent",
|
||||
"name": "Represent - form data",
|
||||
"request": {
|
||||
"method": "POST",
|
||||
"header": [],
|
||||
"body": {
|
||||
"mode": "formdata",
|
||||
"formdata": [
|
||||
{
|
||||
"key": "img",
|
||||
"type": "file",
|
||||
"src": "/Users/sefik/Desktop/deepface/tests/dataset/img1.jpg"
|
||||
},
|
||||
{
|
||||
"key": "model_name",
|
||||
"value": "Facenet",
|
||||
"type": "text"
|
||||
}
|
||||
],
|
||||
"options": {
|
||||
"raw": {
|
||||
"language": "json"
|
||||
}
|
||||
}
|
||||
},
|
||||
"url": {
|
||||
"raw": "http://127.0.0.1:5005/represent",
|
||||
"protocol": "http",
|
||||
"host": [
|
||||
"127",
|
||||
"0",
|
||||
"0",
|
||||
"1"
|
||||
],
|
||||
"port": "5005",
|
||||
"path": [
|
||||
"represent"
|
||||
]
|
||||
}
|
||||
},
|
||||
"response": []
|
||||
},
|
||||
{
|
||||
"name": "Represent - default",
|
||||
"request": {
|
||||
"method": "POST",
|
||||
"header": [],
|
||||
@ -20,7 +62,7 @@
|
||||
}
|
||||
},
|
||||
"url": {
|
||||
"raw": "http://127.0.0.1:5000/represent",
|
||||
"raw": "http://127.0.0.1:5005/represent",
|
||||
"protocol": "http",
|
||||
"host": [
|
||||
"127",
|
||||
@ -28,7 +70,7 @@
|
||||
"0",
|
||||
"1"
|
||||
],
|
||||
"port": "5000",
|
||||
"port": "5005",
|
||||
"path": [
|
||||
"represent"
|
||||
]
|
||||
@ -37,13 +79,13 @@
|
||||
"response": []
|
||||
},
|
||||
{
|
||||
"name": "Face verification",
|
||||
"name": "Face verification - default",
|
||||
"request": {
|
||||
"method": "POST",
|
||||
"header": [],
|
||||
"body": {
|
||||
"mode": "raw",
|
||||
"raw": " {\n \t\"img1_path\": \"/Users/sefik/Desktop/deepface/tests/dataset/img1.jpg\",\n \"img2_path\": \"/Users/sefik/Desktop/deepface/tests/dataset/img2.jpg\",\n \"model_name\": \"Facenet\",\n \"detector_backend\": \"mtcnn\",\n \"distance_metric\": \"euclidean\"\n }",
|
||||
"raw": " {\n \t\"img1\": \"/Users/sefik/Desktop/deepface/tests/dataset/img1.jpg\",\n \"img2\": \"/Users/sefik/Desktop/deepface/tests/dataset/img2.jpg\",\n \"model_name\": \"Facenet\",\n \"detector_backend\": \"mtcnn\",\n \"distance_metric\": \"euclidean\"\n }",
|
||||
"options": {
|
||||
"raw": {
|
||||
"language": "json"
|
||||
@ -51,7 +93,7 @@
|
||||
}
|
||||
},
|
||||
"url": {
|
||||
"raw": "http://127.0.0.1:5000/verify",
|
||||
"raw": "http://127.0.0.1:5005/verify",
|
||||
"protocol": "http",
|
||||
"host": [
|
||||
"127",
|
||||
@ -59,7 +101,7 @@
|
||||
"0",
|
||||
"1"
|
||||
],
|
||||
"port": "5000",
|
||||
"port": "5005",
|
||||
"path": [
|
||||
"verify"
|
||||
]
|
||||
@ -68,13 +110,29 @@
|
||||
"response": []
|
||||
},
|
||||
{
|
||||
"name": "Face analysis",
|
||||
"name": "Face verification - form data",
|
||||
"request": {
|
||||
"method": "POST",
|
||||
"header": [],
|
||||
"body": {
|
||||
"mode": "raw",
|
||||
"raw": "{\n \"img_path\": \"/Users/sefik/Desktop/deepface/tests/dataset/couple.jpg\",\n \"actions\": [\"age\", \"gender\", \"emotion\", \"race\"]\n}",
|
||||
"mode": "formdata",
|
||||
"formdata": [
|
||||
{
|
||||
"key": "img1",
|
||||
"type": "file",
|
||||
"src": "/Users/sefik/Desktop/deepface/tests/dataset/img1.jpg"
|
||||
},
|
||||
{
|
||||
"key": "img2",
|
||||
"type": "file",
|
||||
"src": "/Users/sefik/Desktop/deepface/tests/dataset/img2.jpg"
|
||||
},
|
||||
{
|
||||
"key": "model_name",
|
||||
"value": "Facenet",
|
||||
"type": "text"
|
||||
}
|
||||
],
|
||||
"options": {
|
||||
"raw": {
|
||||
"language": "json"
|
||||
@ -82,7 +140,7 @@
|
||||
}
|
||||
},
|
||||
"url": {
|
||||
"raw": "http://127.0.0.1:5000/analyze",
|
||||
"raw": "http://127.0.0.1:5005/verify",
|
||||
"protocol": "http",
|
||||
"host": [
|
||||
"127",
|
||||
@ -90,7 +148,77 @@
|
||||
"0",
|
||||
"1"
|
||||
],
|
||||
"port": "5000",
|
||||
"port": "5005",
|
||||
"path": [
|
||||
"verify"
|
||||
]
|
||||
}
|
||||
},
|
||||
"response": []
|
||||
},
|
||||
{
|
||||
"name": "Face analysis - default",
|
||||
"request": {
|
||||
"method": "POST",
|
||||
"header": [],
|
||||
"body": {
|
||||
"mode": "raw",
|
||||
"raw": "{\n \"img\": \"/Users/sefik/Desktop/deepface/tests/dataset/img1.jpg\",\n \"actions\": [\"age\", \"gender\", \"emotion\", \"race\"]\n}",
|
||||
"options": {
|
||||
"raw": {
|
||||
"language": "json"
|
||||
}
|
||||
}
|
||||
},
|
||||
"url": {
|
||||
"raw": "http://127.0.0.1:5005/analyze",
|
||||
"protocol": "http",
|
||||
"host": [
|
||||
"127",
|
||||
"0",
|
||||
"0",
|
||||
"1"
|
||||
],
|
||||
"port": "5005",
|
||||
"path": [
|
||||
"analyze"
|
||||
]
|
||||
}
|
||||
},
|
||||
"response": []
|
||||
},
|
||||
{
|
||||
"name": "Face analysis - form data",
|
||||
"request": {
|
||||
"method": "POST",
|
||||
"header": [],
|
||||
"body": {
|
||||
"mode": "formdata",
|
||||
"formdata": [
|
||||
{
|
||||
"key": "img",
|
||||
"type": "file",
|
||||
"src": "/Users/sefik/Desktop/deepface/tests/dataset/img1.jpg"
|
||||
},
|
||||
{
|
||||
"key": "actions",
|
||||
"value": "\"[age, gender]\"",
|
||||
"type": "text"
|
||||
}
|
||||
],
|
||||
"options": {
|
||||
"raw": {
|
||||
"language": "json"
|
||||
}
|
||||
}
|
||||
},
|
||||
"url": {
|
||||
"raw": "http://localhost:5005/analyze",
|
||||
"protocol": "http",
|
||||
"host": [
|
||||
"localhost"
|
||||
],
|
||||
"port": "5005",
|
||||
"path": [
|
||||
"analyze"
|
||||
]
|
||||
|
@ -1,31 +1,86 @@
|
||||
# built-in dependencies
|
||||
from typing import Union
|
||||
|
||||
# 3rd party dependencies
|
||||
from flask import Blueprint, request
|
||||
import numpy as np
|
||||
|
||||
# project dependencies
|
||||
from deepface import DeepFace
|
||||
from deepface.api.src.modules.core import service
|
||||
from deepface.commons import image_utils
|
||||
from deepface.commons.logger import Logger
|
||||
|
||||
logger = Logger()
|
||||
|
||||
blueprint = Blueprint("routes", __name__)
|
||||
|
||||
# pylint: disable=no-else-return, broad-except
|
||||
|
||||
|
||||
@blueprint.route("/")
|
||||
def home():
|
||||
return f"<h1>Welcome to DeepFace API v{DeepFace.__version__}!</h1>"
|
||||
|
||||
|
||||
def extract_image_from_request(img_key: str) -> Union[str, np.ndarray]:
|
||||
"""
|
||||
Extracts an image from the request either from json or a multipart/form-data file.
|
||||
|
||||
Args:
|
||||
img_key (str): The key used to retrieve the image data
|
||||
from the request (e.g., 'img1').
|
||||
|
||||
Returns:
|
||||
img (str or np.ndarray): Given image detail (base64 encoded string, image path or url)
|
||||
or the decoded image as a numpy array.
|
||||
"""
|
||||
|
||||
# Check if the request is multipart/form-data (file input)
|
||||
if request.files:
|
||||
# request.files is instance of werkzeug.datastructures.ImmutableMultiDict
|
||||
# file is instance of werkzeug.datastructures.FileStorage
|
||||
file = request.files.get(img_key)
|
||||
|
||||
if file is None:
|
||||
raise ValueError(f"Request form data doesn't have {img_key}")
|
||||
|
||||
if file.filename == "":
|
||||
raise ValueError(f"No file uploaded for '{img_key}'")
|
||||
|
||||
img = image_utils.load_image_from_file_storage(file)
|
||||
|
||||
return img
|
||||
# Check if the request is coming as base64, file path or url from json or form data
|
||||
elif request.is_json or request.form:
|
||||
input_args = request.get_json() or request.form.to_dict()
|
||||
|
||||
if input_args is None:
|
||||
raise ValueError("empty input set passed")
|
||||
|
||||
# this can be base64 encoded image, and image path or url
|
||||
img = input_args.get(img_key)
|
||||
|
||||
if not img:
|
||||
raise ValueError(f"'{img_key}' not found in either json or form data request")
|
||||
|
||||
return img
|
||||
|
||||
# If neither JSON nor file input is present
|
||||
raise ValueError(f"'{img_key}' not found in request in either json or form data")
|
||||
|
||||
|
||||
@blueprint.route("/represent", methods=["POST"])
|
||||
def represent():
|
||||
input_args = request.get_json()
|
||||
input_args = request.get_json() or request.form.to_dict()
|
||||
|
||||
if input_args is None:
|
||||
return {"message": "empty input set passed"}
|
||||
|
||||
img_path = input_args.get("img") or input_args.get("img_path")
|
||||
if img_path is None:
|
||||
return {"message": "you must pass img_path input"}
|
||||
try:
|
||||
img = extract_image_from_request("img")
|
||||
except Exception as err:
|
||||
return {"exception": str(err)}, 400
|
||||
|
||||
obj = service.represent(
|
||||
img_path=img_path,
|
||||
img_path=img,
|
||||
model_name=input_args.get("model_name", "VGG-Face"),
|
||||
detector_backend=input_args.get("detector_backend", "opencv"),
|
||||
enforce_detection=input_args.get("enforce_detection", True),
|
||||
@ -41,23 +96,21 @@ def represent():
|
||||
|
||||
@blueprint.route("/verify", methods=["POST"])
|
||||
def verify():
|
||||
input_args = request.get_json()
|
||||
input_args = request.get_json() or request.form.to_dict()
|
||||
|
||||
if input_args is None:
|
||||
return {"message": "empty input set passed"}
|
||||
try:
|
||||
img1 = extract_image_from_request("img1")
|
||||
except Exception as err:
|
||||
return {"exception": str(err)}, 400
|
||||
|
||||
img1_path = input_args.get("img1") or input_args.get("img1_path")
|
||||
img2_path = input_args.get("img2") or input_args.get("img2_path")
|
||||
|
||||
if img1_path is None:
|
||||
return {"message": "you must pass img1_path input"}
|
||||
|
||||
if img2_path is None:
|
||||
return {"message": "you must pass img2_path input"}
|
||||
try:
|
||||
img2 = extract_image_from_request("img2")
|
||||
except Exception as err:
|
||||
return {"exception": str(err)}, 400
|
||||
|
||||
verification = service.verify(
|
||||
img1_path=img1_path,
|
||||
img2_path=img2_path,
|
||||
img1_path=img1,
|
||||
img2_path=img2,
|
||||
model_name=input_args.get("model_name", "VGG-Face"),
|
||||
detector_backend=input_args.get("detector_backend", "opencv"),
|
||||
distance_metric=input_args.get("distance_metric", "cosine"),
|
||||
@ -73,18 +126,31 @@ def verify():
|
||||
|
||||
@blueprint.route("/analyze", methods=["POST"])
|
||||
def analyze():
|
||||
input_args = request.get_json()
|
||||
input_args = request.get_json() or request.form.to_dict()
|
||||
|
||||
if input_args is None:
|
||||
return {"message": "empty input set passed"}
|
||||
try:
|
||||
img = extract_image_from_request("img")
|
||||
except Exception as err:
|
||||
return {"exception": str(err)}, 400
|
||||
|
||||
img_path = input_args.get("img") or input_args.get("img_path")
|
||||
if img_path is None:
|
||||
return {"message": "you must pass img_path input"}
|
||||
actions = input_args.get("actions", ["age", "gender", "emotion", "race"])
|
||||
# actions is the only argument instance of list or tuple
|
||||
# if request is form data, input args can either be text or file
|
||||
if isinstance(actions, str):
|
||||
actions = (
|
||||
actions.replace("[", "")
|
||||
.replace("]", "")
|
||||
.replace("(", "")
|
||||
.replace(")", "")
|
||||
.replace('"', "")
|
||||
.replace("'", "")
|
||||
.replace(" ", "")
|
||||
.split(",")
|
||||
)
|
||||
|
||||
demographies = service.analyze(
|
||||
img_path=img_path,
|
||||
actions=input_args.get("actions", ["age", "gender", "emotion", "race"]),
|
||||
img_path=img,
|
||||
actions=actions,
|
||||
detector_backend=input_args.get("detector_backend", "opencv"),
|
||||
enforce_detection=input_args.get("enforce_detection", True),
|
||||
align=input_args.get("align", True),
|
||||
|
@ -1,15 +1,22 @@
|
||||
# built-in dependencies
|
||||
import traceback
|
||||
from typing import Optional
|
||||
from typing import Optional, Union
|
||||
|
||||
# 3rd party dependencies
|
||||
import numpy as np
|
||||
|
||||
# project dependencies
|
||||
from deepface import DeepFace
|
||||
from deepface.commons.logger import Logger
|
||||
|
||||
logger = Logger()
|
||||
|
||||
|
||||
# pylint: disable=broad-except
|
||||
|
||||
|
||||
def represent(
|
||||
img_path: str,
|
||||
img_path: Union[str, np.ndarray],
|
||||
model_name: str,
|
||||
detector_backend: str,
|
||||
enforce_detection: bool,
|
||||
@ -32,12 +39,14 @@ def represent(
|
||||
return result
|
||||
except Exception as err:
|
||||
tb_str = traceback.format_exc()
|
||||
logger.error(str(err))
|
||||
logger.error(tb_str)
|
||||
return {"error": f"Exception while representing: {str(err)} - {tb_str}"}, 400
|
||||
|
||||
|
||||
def verify(
|
||||
img1_path: str,
|
||||
img2_path: str,
|
||||
img1_path: Union[str, np.ndarray],
|
||||
img2_path: Union[str, np.ndarray],
|
||||
model_name: str,
|
||||
detector_backend: str,
|
||||
distance_metric: str,
|
||||
@ -59,11 +68,13 @@ def verify(
|
||||
return obj
|
||||
except Exception as err:
|
||||
tb_str = traceback.format_exc()
|
||||
logger.error(str(err))
|
||||
logger.error(tb_str)
|
||||
return {"error": f"Exception while verifying: {str(err)} - {tb_str}"}, 400
|
||||
|
||||
|
||||
def analyze(
|
||||
img_path: str,
|
||||
img_path: Union[str, np.ndarray],
|
||||
actions: list,
|
||||
detector_backend: str,
|
||||
enforce_detection: bool,
|
||||
@ -85,4 +96,6 @@ def analyze(
|
||||
return result
|
||||
except Exception as err:
|
||||
tb_str = traceback.format_exc()
|
||||
logger.error(str(err))
|
||||
logger.error(tb_str)
|
||||
return {"error": f"Exception while analyzing: {str(err)} - {tb_str}"}, 400
|
||||
|
@ -11,6 +11,7 @@ import requests
|
||||
import numpy as np
|
||||
import cv2
|
||||
from PIL import Image
|
||||
from werkzeug.datastructures import FileStorage
|
||||
|
||||
|
||||
def list_images(path: str) -> List[str]:
|
||||
@ -133,6 +134,21 @@ def load_image_from_base64(uri: str) -> np.ndarray:
|
||||
return img_bgr
|
||||
|
||||
|
||||
def load_image_from_file_storage(file: FileStorage) -> np.ndarray:
|
||||
"""
|
||||
Loads an image from a FileStorage object and decodes it into an OpenCV image.
|
||||
Args:
|
||||
file (FileStorage): The FileStorage object containing the image file.
|
||||
Returns:
|
||||
img (np.ndarray): The decoded image as a numpy array (OpenCV format).
|
||||
"""
|
||||
file_bytes = np.frombuffer(file.read(), np.uint8)
|
||||
image = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR)
|
||||
if image is None:
|
||||
raise ValueError("Failed to decode image")
|
||||
return image
|
||||
|
||||
|
||||
def load_image_from_web(url: str) -> np.ndarray:
|
||||
"""
|
||||
Loading an image from web
|
||||
|
@ -1,16 +1,29 @@
|
||||
# built-in dependencies
|
||||
import os
|
||||
import base64
|
||||
import unittest
|
||||
|
||||
# 3rd party dependencies
|
||||
import gdown
|
||||
|
||||
# project dependencies
|
||||
from deepface.api.src.app import create_app
|
||||
from deepface.commons.logger import Logger
|
||||
|
||||
logger = Logger()
|
||||
|
||||
IMG1_SOURCE = (
|
||||
"https://raw.githubusercontent.com/serengil/deepface/refs/heads/master/tests/dataset/img1.jpg"
|
||||
)
|
||||
IMG2_SOURCE = (
|
||||
"https://raw.githubusercontent.com/serengil/deepface/refs/heads/master/tests/dataset/img2.jpg"
|
||||
)
|
||||
|
||||
|
||||
class TestVerifyEndpoint(unittest.TestCase):
|
||||
def setUp(self):
|
||||
download_test_images(IMG1_SOURCE)
|
||||
download_test_images(IMG2_SOURCE)
|
||||
app = create_app()
|
||||
app.config["DEBUG"] = True
|
||||
app.config["TESTING"] = True
|
||||
@ -18,8 +31,8 @@ class TestVerifyEndpoint(unittest.TestCase):
|
||||
|
||||
def test_tp_verify(self):
|
||||
data = {
|
||||
"img1_path": "dataset/img1.jpg",
|
||||
"img2_path": "dataset/img2.jpg",
|
||||
"img1": "dataset/img1.jpg",
|
||||
"img2": "dataset/img2.jpg",
|
||||
}
|
||||
response = self.app.post("/verify", json=data)
|
||||
assert response.status_code == 200
|
||||
@ -40,8 +53,8 @@ class TestVerifyEndpoint(unittest.TestCase):
|
||||
|
||||
def test_tn_verify(self):
|
||||
data = {
|
||||
"img1_path": "dataset/img1.jpg",
|
||||
"img2_path": "dataset/img2.jpg",
|
||||
"img1": "dataset/img1.jpg",
|
||||
"img2": "dataset/img2.jpg",
|
||||
}
|
||||
response = self.app.post("/verify", json=data)
|
||||
assert response.status_code == 200
|
||||
@ -83,14 +96,11 @@ class TestVerifyEndpoint(unittest.TestCase):
|
||||
def test_represent_encoded(self):
|
||||
image_path = "dataset/img1.jpg"
|
||||
with open(image_path, "rb") as image_file:
|
||||
encoded_string = "data:image/jpeg;base64," + \
|
||||
base64.b64encode(image_file.read()).decode("utf8")
|
||||
encoded_string = "data:image/jpeg;base64," + base64.b64encode(image_file.read()).decode(
|
||||
"utf8"
|
||||
)
|
||||
|
||||
data = {
|
||||
"model_name": "Facenet",
|
||||
"detector_backend": "mtcnn",
|
||||
"img": encoded_string
|
||||
}
|
||||
data = {"model_name": "Facenet", "detector_backend": "mtcnn", "img": encoded_string}
|
||||
|
||||
response = self.app.post("/represent", json=data)
|
||||
assert response.status_code == 200
|
||||
@ -112,7 +122,7 @@ class TestVerifyEndpoint(unittest.TestCase):
|
||||
data = {
|
||||
"model_name": "Facenet",
|
||||
"detector_backend": "mtcnn",
|
||||
"img": "https://github.com/serengil/deepface/blob/master/tests/dataset/couple.jpg?raw=true"
|
||||
"img": "https://github.com/serengil/deepface/blob/master/tests/dataset/couple.jpg?raw=true",
|
||||
}
|
||||
|
||||
response = self.app.post("/represent", json=data)
|
||||
@ -155,8 +165,9 @@ class TestVerifyEndpoint(unittest.TestCase):
|
||||
def test_analyze_inputformats(self):
|
||||
image_path = "dataset/couple.jpg"
|
||||
with open(image_path, "rb") as image_file:
|
||||
encoded_image = "data:image/jpeg;base64," + \
|
||||
base64.b64encode(image_file.read()).decode("utf8")
|
||||
encoded_image = "data:image/jpeg;base64," + base64.b64encode(image_file.read()).decode(
|
||||
"utf8"
|
||||
)
|
||||
|
||||
image_sources = [
|
||||
# image path
|
||||
@ -164,7 +175,7 @@ class TestVerifyEndpoint(unittest.TestCase):
|
||||
# image url
|
||||
f"https://github.com/serengil/deepface/blob/master/tests/{image_path}?raw=true",
|
||||
# encoded image
|
||||
encoded_image
|
||||
encoded_image,
|
||||
]
|
||||
|
||||
results = []
|
||||
@ -189,25 +200,38 @@ class TestVerifyEndpoint(unittest.TestCase):
|
||||
assert i.get("dominant_emotion") is not None
|
||||
assert i.get("dominant_race") is not None
|
||||
|
||||
assert len(results[0]["results"]) == len(results[1]["results"])\
|
||||
and len(results[0]["results"]) == len(results[2]["results"])
|
||||
assert len(results[0]["results"]) == len(results[1]["results"]) and len(
|
||||
results[0]["results"]
|
||||
) == len(results[2]["results"])
|
||||
|
||||
for i in range(len(results[0]['results'])):
|
||||
assert results[0]["results"][i]["dominant_emotion"] == results[1]["results"][i]["dominant_emotion"]\
|
||||
and results[0]["results"][i]["dominant_emotion"] == results[2]["results"][i]["dominant_emotion"]
|
||||
for i in range(len(results[0]["results"])):
|
||||
assert (
|
||||
results[0]["results"][i]["dominant_emotion"]
|
||||
== results[1]["results"][i]["dominant_emotion"]
|
||||
and results[0]["results"][i]["dominant_emotion"]
|
||||
== results[2]["results"][i]["dominant_emotion"]
|
||||
)
|
||||
|
||||
assert results[0]["results"][i]["dominant_gender"] == results[1]["results"][i]["dominant_gender"]\
|
||||
and results[0]["results"][i]["dominant_gender"] == results[2]["results"][i]["dominant_gender"]
|
||||
assert (
|
||||
results[0]["results"][i]["dominant_gender"]
|
||||
== results[1]["results"][i]["dominant_gender"]
|
||||
and results[0]["results"][i]["dominant_gender"]
|
||||
== results[2]["results"][i]["dominant_gender"]
|
||||
)
|
||||
|
||||
assert results[0]["results"][i]["dominant_race"] == results[1]["results"][i]["dominant_race"]\
|
||||
and results[0]["results"][i]["dominant_race"] == results[2]["results"][i]["dominant_race"]
|
||||
assert (
|
||||
results[0]["results"][i]["dominant_race"]
|
||||
== results[1]["results"][i]["dominant_race"]
|
||||
and results[0]["results"][i]["dominant_race"]
|
||||
== results[2]["results"][i]["dominant_race"]
|
||||
)
|
||||
|
||||
logger.info("✅ different inputs test is done")
|
||||
|
||||
def test_invalid_verify(self):
|
||||
data = {
|
||||
"img1_path": "dataset/invalid_1.jpg",
|
||||
"img2_path": "dataset/invalid_2.jpg",
|
||||
"img1": "dataset/invalid_1.jpg",
|
||||
"img2": "dataset/invalid_2.jpg",
|
||||
}
|
||||
response = self.app.post("/verify", json=data)
|
||||
assert response.status_code == 400
|
||||
@ -227,3 +251,87 @@ class TestVerifyEndpoint(unittest.TestCase):
|
||||
}
|
||||
response = self.app.post("/analyze", json=data)
|
||||
assert response.status_code == 400
|
||||
|
||||
def test_analyze_for_multipart_form_data(self):
|
||||
with open("/tmp/img1.jpg", "rb") as img_file:
|
||||
response = self.app.post(
|
||||
"/analyze",
|
||||
content_type="multipart/form-data",
|
||||
data={
|
||||
"img": (img_file, "test_image.jpg"),
|
||||
"actions": '["age", "gender"]',
|
||||
"detector_backend": "mtcnn",
|
||||
},
|
||||
)
|
||||
assert response.status_code == 200
|
||||
result = response.json
|
||||
assert isinstance(result, dict)
|
||||
assert result.get("age") is not True
|
||||
assert result.get("dominant_gender") is not True
|
||||
logger.info("✅ analyze api for multipart form data test is done")
|
||||
|
||||
def test_verify_for_multipart_form_data(self):
|
||||
with open("/tmp/img1.jpg", "rb") as img1_file:
|
||||
with open("/tmp/img2.jpg", "rb") as img2_file:
|
||||
response = self.app.post(
|
||||
"/verify",
|
||||
content_type="multipart/form-data",
|
||||
data={
|
||||
"img1": (img1_file, "first_image.jpg"),
|
||||
"img2": (img2_file, "second_image.jpg"),
|
||||
"model_name": "Facenet",
|
||||
"detector_backend": "mtcnn",
|
||||
"distance_metric": "euclidean",
|
||||
},
|
||||
)
|
||||
assert response.status_code == 200
|
||||
result = response.json
|
||||
assert isinstance(result, dict)
|
||||
assert result.get("verified") is not None
|
||||
assert result.get("model") == "Facenet"
|
||||
assert result.get("similarity_metric") is not None
|
||||
assert result.get("detector_backend") == "mtcnn"
|
||||
assert result.get("threshold") is not None
|
||||
assert result.get("facial_areas") is not None
|
||||
|
||||
logger.info("✅ verify api for multipart form data test is done")
|
||||
|
||||
def test_represent_for_multipart_form_data(self):
|
||||
with open("/tmp/img1.jpg", "rb") as img_file:
|
||||
response = self.app.post(
|
||||
"/represent",
|
||||
content_type="multipart/form-data",
|
||||
data={
|
||||
"img": (img_file, "first_image.jpg"),
|
||||
"model_name": "Facenet",
|
||||
"detector_backend": "mtcnn",
|
||||
},
|
||||
)
|
||||
assert response.status_code == 200
|
||||
result = response.json
|
||||
assert isinstance(result, dict)
|
||||
logger.info("✅ represent api for multipart form data test is done")
|
||||
|
||||
def test_represent_for_multipart_form_data_and_filepath(self):
|
||||
response = self.app.post(
|
||||
"/represent",
|
||||
content_type="multipart/form-data",
|
||||
data={
|
||||
"img": "/tmp/img1.jpg",
|
||||
"model_name": "Facenet",
|
||||
"detector_backend": "mtcnn",
|
||||
},
|
||||
)
|
||||
assert response.status_code == 200
|
||||
result = response.json
|
||||
assert isinstance(result, dict)
|
||||
logger.info("✅ represent api for multipart form data and file path test is done")
|
||||
|
||||
|
||||
def download_test_images(url: str):
|
||||
file_name = url.split("/")[-1]
|
||||
target_file = f"/tmp/{file_name}"
|
||||
if os.path.exists(target_file) is True:
|
||||
return
|
||||
|
||||
gdown.download(url, target_file, quiet=False)
|
||||
|
Loading…
x
Reference in New Issue
Block a user