mirror of
https://github.com/serengil/deepface.git
synced 2025-06-07 03:55:21 +00:00
Merge pull request #1415 from Mehrab-Shahbazi/master
video path is enabled in stream
This commit is contained in:
commit
c465234788
@ -68,18 +68,18 @@ def build_model(model_name: str, task: str = "facial_recognition") -> Any:
|
|||||||
|
|
||||||
|
|
||||||
def verify(
|
def verify(
|
||||||
img1_path: Union[str, np.ndarray, List[float]],
|
img1_path: Union[str, np.ndarray, List[float]],
|
||||||
img2_path: Union[str, np.ndarray, List[float]],
|
img2_path: Union[str, np.ndarray, List[float]],
|
||||||
model_name: str = "VGG-Face",
|
model_name: str = "VGG-Face",
|
||||||
detector_backend: str = "opencv",
|
detector_backend: str = "opencv",
|
||||||
distance_metric: str = "cosine",
|
distance_metric: str = "cosine",
|
||||||
enforce_detection: bool = True,
|
enforce_detection: bool = True,
|
||||||
align: bool = True,
|
align: bool = True,
|
||||||
expand_percentage: int = 0,
|
expand_percentage: int = 0,
|
||||||
normalization: str = "base",
|
normalization: str = "base",
|
||||||
silent: bool = False,
|
silent: bool = False,
|
||||||
threshold: Optional[float] = None,
|
threshold: Optional[float] = None,
|
||||||
anti_spoofing: bool = False,
|
anti_spoofing: bool = False,
|
||||||
) -> Dict[str, Any]:
|
) -> Dict[str, Any]:
|
||||||
"""
|
"""
|
||||||
Verify if an image pair represents the same person or different persons.
|
Verify if an image pair represents the same person or different persons.
|
||||||
@ -164,14 +164,14 @@ def verify(
|
|||||||
|
|
||||||
|
|
||||||
def analyze(
|
def analyze(
|
||||||
img_path: Union[str, np.ndarray],
|
img_path: Union[str, np.ndarray],
|
||||||
actions: Union[tuple, list] = ("emotion", "age", "gender", "race"),
|
actions: Union[tuple, list] = ("emotion", "age", "gender", "race"),
|
||||||
enforce_detection: bool = True,
|
enforce_detection: bool = True,
|
||||||
detector_backend: str = "opencv",
|
detector_backend: str = "opencv",
|
||||||
align: bool = True,
|
align: bool = True,
|
||||||
expand_percentage: int = 0,
|
expand_percentage: int = 0,
|
||||||
silent: bool = False,
|
silent: bool = False,
|
||||||
anti_spoofing: bool = False,
|
anti_spoofing: bool = False,
|
||||||
) -> List[Dict[str, Any]]:
|
) -> List[Dict[str, Any]]:
|
||||||
"""
|
"""
|
||||||
Analyze facial attributes such as age, gender, emotion, and race in the provided image.
|
Analyze facial attributes such as age, gender, emotion, and race in the provided image.
|
||||||
@ -263,20 +263,20 @@ def analyze(
|
|||||||
|
|
||||||
|
|
||||||
def find(
|
def find(
|
||||||
img_path: Union[str, np.ndarray],
|
img_path: Union[str, np.ndarray],
|
||||||
db_path: str,
|
db_path: str,
|
||||||
model_name: str = "VGG-Face",
|
model_name: str = "VGG-Face",
|
||||||
distance_metric: str = "cosine",
|
distance_metric: str = "cosine",
|
||||||
enforce_detection: bool = True,
|
enforce_detection: bool = True,
|
||||||
detector_backend: str = "opencv",
|
detector_backend: str = "opencv",
|
||||||
align: bool = True,
|
align: bool = True,
|
||||||
expand_percentage: int = 0,
|
expand_percentage: int = 0,
|
||||||
threshold: Optional[float] = None,
|
threshold: Optional[float] = None,
|
||||||
normalization: str = "base",
|
normalization: str = "base",
|
||||||
silent: bool = False,
|
silent: bool = False,
|
||||||
refresh_database: bool = True,
|
refresh_database: bool = True,
|
||||||
anti_spoofing: bool = False,
|
anti_spoofing: bool = False,
|
||||||
batched: bool = False,
|
batched: bool = False,
|
||||||
) -> Union[List[pd.DataFrame], List[List[Dict[str, Any]]]]:
|
) -> Union[List[pd.DataFrame], List[List[Dict[str, Any]]]]:
|
||||||
"""
|
"""
|
||||||
Identify individuals in a database
|
Identify individuals in a database
|
||||||
@ -369,15 +369,15 @@ def find(
|
|||||||
|
|
||||||
|
|
||||||
def represent(
|
def represent(
|
||||||
img_path: Union[str, np.ndarray],
|
img_path: Union[str, np.ndarray],
|
||||||
model_name: str = "VGG-Face",
|
model_name: str = "VGG-Face",
|
||||||
enforce_detection: bool = True,
|
enforce_detection: bool = True,
|
||||||
detector_backend: str = "opencv",
|
detector_backend: str = "opencv",
|
||||||
align: bool = True,
|
align: bool = True,
|
||||||
expand_percentage: int = 0,
|
expand_percentage: int = 0,
|
||||||
normalization: str = "base",
|
normalization: str = "base",
|
||||||
anti_spoofing: bool = False,
|
anti_spoofing: bool = False,
|
||||||
max_faces: Optional[int] = None,
|
max_faces: Optional[int] = None,
|
||||||
) -> List[Dict[str, Any]]:
|
) -> List[Dict[str, Any]]:
|
||||||
"""
|
"""
|
||||||
Represent facial images as multi-dimensional vector embeddings.
|
Represent facial images as multi-dimensional vector embeddings.
|
||||||
@ -441,15 +441,16 @@ def represent(
|
|||||||
|
|
||||||
|
|
||||||
def stream(
|
def stream(
|
||||||
db_path: str = "",
|
db_path: str = "",
|
||||||
model_name: str = "VGG-Face",
|
model_name: str = "VGG-Face",
|
||||||
detector_backend: str = "opencv",
|
detector_backend: str = "opencv",
|
||||||
distance_metric: str = "cosine",
|
distance_metric: str = "cosine",
|
||||||
enable_face_analysis: bool = True,
|
enable_face_analysis: bool = True,
|
||||||
source: Any = 0,
|
source: Any = 0,
|
||||||
time_threshold: int = 5,
|
time_threshold: int = 5,
|
||||||
frame_threshold: int = 5,
|
frame_threshold: int = 5,
|
||||||
anti_spoofing: bool = False,
|
anti_spoofing: bool = False,
|
||||||
|
output_path: Optional[str] = None,
|
||||||
) -> None:
|
) -> None:
|
||||||
"""
|
"""
|
||||||
Run real time face recognition and facial attribute analysis
|
Run real time face recognition and facial attribute analysis
|
||||||
@ -478,6 +479,10 @@ def stream(
|
|||||||
frame_threshold (int): The frame threshold for face recognition (default is 5).
|
frame_threshold (int): The frame threshold for face recognition (default is 5).
|
||||||
|
|
||||||
anti_spoofing (boolean): Flag to enable anti spoofing (default is False).
|
anti_spoofing (boolean): Flag to enable anti spoofing (default is False).
|
||||||
|
|
||||||
|
output_path (str): Path to save the output video. (default is None
|
||||||
|
If None, no video is saved).
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
None
|
None
|
||||||
"""
|
"""
|
||||||
@ -495,19 +500,20 @@ def stream(
|
|||||||
time_threshold=time_threshold,
|
time_threshold=time_threshold,
|
||||||
frame_threshold=frame_threshold,
|
frame_threshold=frame_threshold,
|
||||||
anti_spoofing=anti_spoofing,
|
anti_spoofing=anti_spoofing,
|
||||||
|
output_path=output_path,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def extract_faces(
|
def extract_faces(
|
||||||
img_path: Union[str, np.ndarray],
|
img_path: Union[str, np.ndarray],
|
||||||
detector_backend: str = "opencv",
|
detector_backend: str = "opencv",
|
||||||
enforce_detection: bool = True,
|
enforce_detection: bool = True,
|
||||||
align: bool = True,
|
align: bool = True,
|
||||||
expand_percentage: int = 0,
|
expand_percentage: int = 0,
|
||||||
grayscale: bool = False,
|
grayscale: bool = False,
|
||||||
color_face: str = "rgb",
|
color_face: str = "rgb",
|
||||||
normalize_face: bool = True,
|
normalize_face: bool = True,
|
||||||
anti_spoofing: bool = False,
|
anti_spoofing: bool = False,
|
||||||
) -> List[Dict[str, Any]]:
|
) -> List[Dict[str, Any]]:
|
||||||
"""
|
"""
|
||||||
Extract faces from a given image
|
Extract faces from a given image
|
||||||
@ -584,11 +590,11 @@ def cli() -> None:
|
|||||||
|
|
||||||
|
|
||||||
def detectFace(
|
def detectFace(
|
||||||
img_path: Union[str, np.ndarray],
|
img_path: Union[str, np.ndarray],
|
||||||
target_size: tuple = (224, 224),
|
target_size: tuple = (224, 224),
|
||||||
detector_backend: str = "opencv",
|
detector_backend: str = "opencv",
|
||||||
enforce_detection: bool = True,
|
enforce_detection: bool = True,
|
||||||
align: bool = True,
|
align: bool = True,
|
||||||
) -> Union[np.ndarray, None]:
|
) -> Union[np.ndarray, None]:
|
||||||
"""
|
"""
|
||||||
Deprecated face detection function. Use extract_faces for same functionality.
|
Deprecated face detection function. Use extract_faces for same functionality.
|
||||||
|
@ -22,6 +22,7 @@ os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
|
|||||||
IDENTIFIED_IMG_SIZE = 112
|
IDENTIFIED_IMG_SIZE = 112
|
||||||
TEXT_COLOR = (255, 255, 255)
|
TEXT_COLOR = (255, 255, 255)
|
||||||
|
|
||||||
|
|
||||||
# pylint: disable=unused-variable
|
# pylint: disable=unused-variable
|
||||||
def analysis(
|
def analysis(
|
||||||
db_path: str,
|
db_path: str,
|
||||||
@ -33,6 +34,7 @@ def analysis(
|
|||||||
time_threshold=5,
|
time_threshold=5,
|
||||||
frame_threshold=5,
|
frame_threshold=5,
|
||||||
anti_spoofing: bool = False,
|
anti_spoofing: bool = False,
|
||||||
|
output_path: Optional[str] = None,
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
Run real time face recognition and facial attribute analysis
|
Run real time face recognition and facial attribute analysis
|
||||||
@ -62,6 +64,8 @@ def analysis(
|
|||||||
|
|
||||||
anti_spoofing (boolean): Flag to enable anti spoofing (default is False).
|
anti_spoofing (boolean): Flag to enable anti spoofing (default is False).
|
||||||
|
|
||||||
|
output_path (str): Path to save the output video. (default is None
|
||||||
|
If None, no video is saved).
|
||||||
Returns:
|
Returns:
|
||||||
None
|
None
|
||||||
"""
|
"""
|
||||||
@ -77,12 +81,31 @@ def analysis(
|
|||||||
model_name=model_name,
|
model_name=model_name,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
cap = cv2.VideoCapture(source if isinstance(source, str) else int(source))
|
||||||
|
if not cap.isOpened():
|
||||||
|
logger.error(f"Cannot open video source: {source}")
|
||||||
|
return
|
||||||
|
|
||||||
|
# Get video properties
|
||||||
|
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||||
|
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||||
|
fps = cap.get(cv2.CAP_PROP_FPS)
|
||||||
|
fourcc = cv2.VideoWriter_fourcc(*"mp4v") # Codec for output file
|
||||||
|
# Ensure the output directory exists if output_path is provided
|
||||||
|
if output_path:
|
||||||
|
os.makedirs(os.path.dirname(output_path), exist_ok=True)
|
||||||
|
# Initialize video writer if output_path is provided
|
||||||
|
video_writer = (
|
||||||
|
cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height))
|
||||||
|
if output_path
|
||||||
|
else None
|
||||||
|
)
|
||||||
|
|
||||||
freezed_img = None
|
freezed_img = None
|
||||||
freeze = False
|
freeze = False
|
||||||
num_frames_with_faces = 0
|
num_frames_with_faces = 0
|
||||||
tic = time.time()
|
tic = time.time()
|
||||||
|
|
||||||
cap = cv2.VideoCapture(source) # webcam
|
|
||||||
while True:
|
while True:
|
||||||
has_frame, img = cap.read()
|
has_frame, img = cap.read()
|
||||||
if not has_frame:
|
if not has_frame:
|
||||||
@ -91,9 +114,9 @@ def analysis(
|
|||||||
# we are adding some figures into img such as identified facial image, age, gender
|
# we are adding some figures into img such as identified facial image, age, gender
|
||||||
# that is why, we need raw image itself to make analysis
|
# that is why, we need raw image itself to make analysis
|
||||||
raw_img = img.copy()
|
raw_img = img.copy()
|
||||||
|
|
||||||
faces_coordinates = []
|
faces_coordinates = []
|
||||||
if freeze is False:
|
|
||||||
|
if not freeze:
|
||||||
faces_coordinates = grab_facial_areas(
|
faces_coordinates = grab_facial_areas(
|
||||||
img=img, detector_backend=detector_backend, anti_spoofing=anti_spoofing
|
img=img, detector_backend=detector_backend, anti_spoofing=anti_spoofing
|
||||||
)
|
)
|
||||||
@ -101,7 +124,6 @@ def analysis(
|
|||||||
# we will pass img to analyze modules (identity, demography) and add some illustrations
|
# we will pass img to analyze modules (identity, demography) and add some illustrations
|
||||||
# that is why, we will not be able to extract detected face from img clearly
|
# that is why, we will not be able to extract detected face from img clearly
|
||||||
detected_faces = extract_facial_areas(img=img, faces_coordinates=faces_coordinates)
|
detected_faces = extract_facial_areas(img=img, faces_coordinates=faces_coordinates)
|
||||||
|
|
||||||
img = highlight_facial_areas(img=img, faces_coordinates=faces_coordinates)
|
img = highlight_facial_areas(img=img, faces_coordinates=faces_coordinates)
|
||||||
img = countdown_to_freeze(
|
img = countdown_to_freeze(
|
||||||
img=img,
|
img=img,
|
||||||
@ -111,8 +133,8 @@ def analysis(
|
|||||||
)
|
)
|
||||||
|
|
||||||
num_frames_with_faces = num_frames_with_faces + 1 if len(faces_coordinates) else 0
|
num_frames_with_faces = num_frames_with_faces + 1 if len(faces_coordinates) else 0
|
||||||
|
|
||||||
freeze = num_frames_with_faces > 0 and num_frames_with_faces % frame_threshold == 0
|
freeze = num_frames_with_faces > 0 and num_frames_with_faces % frame_threshold == 0
|
||||||
|
|
||||||
if freeze:
|
if freeze:
|
||||||
# add analyze results into img - derive from raw_img
|
# add analyze results into img - derive from raw_img
|
||||||
img = highlight_facial_areas(
|
img = highlight_facial_areas(
|
||||||
@ -144,22 +166,28 @@ def analysis(
|
|||||||
tic = time.time()
|
tic = time.time()
|
||||||
logger.info("freezed")
|
logger.info("freezed")
|
||||||
|
|
||||||
elif freeze is True and time.time() - tic > time_threshold:
|
elif freeze and time.time() - tic > time_threshold:
|
||||||
freeze = False
|
freeze = False
|
||||||
freezed_img = None
|
freezed_img = None
|
||||||
# reset counter for freezing
|
# reset counter for freezing
|
||||||
tic = time.time()
|
tic = time.time()
|
||||||
logger.info("freeze released")
|
logger.info("Freeze released")
|
||||||
|
|
||||||
freezed_img = countdown_to_release(img=freezed_img, tic=tic, time_threshold=time_threshold)
|
freezed_img = countdown_to_release(img=freezed_img, tic=tic, time_threshold=time_threshold)
|
||||||
|
display_img = img if freezed_img is None else freezed_img
|
||||||
|
|
||||||
cv2.imshow("img", img if freezed_img is None else freezed_img)
|
# Save the frame to output video if writer is initialized
|
||||||
|
if video_writer:
|
||||||
|
video_writer.write(display_img)
|
||||||
|
|
||||||
if cv2.waitKey(1) & 0xFF == ord("q"): # press q to quit
|
cv2.imshow("img", display_img)
|
||||||
|
if cv2.waitKey(1) & 0xFF == ord("q"):
|
||||||
break
|
break
|
||||||
|
|
||||||
# kill open cv things
|
# Release resources
|
||||||
cap.release()
|
cap.release()
|
||||||
|
if video_writer:
|
||||||
|
video_writer.release()
|
||||||
cv2.destroyAllWindows()
|
cv2.destroyAllWindows()
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user