diff --git a/deepface/commons/distance.py b/deepface/commons/distance.py index 6048b9e..950a7a2 100644 --- a/deepface/commons/distance.py +++ b/deepface/commons/distance.py @@ -2,7 +2,7 @@ from typing import Union import numpy as np -def findCosineDistance( +def find_cosine_distance( source_representation: Union[np.ndarray, list], test_representation: Union[np.ndarray, list] ) -> np.float64: if isinstance(source_representation, list): @@ -17,7 +17,7 @@ def findCosineDistance( return 1 - (a / (np.sqrt(b) * np.sqrt(c))) -def findEuclideanDistance( +def find_euclidean_distance( source_representation: Union[np.ndarray, list], test_representation: Union[np.ndarray, list] ) -> np.float64: if isinstance(source_representation, list): @@ -38,7 +38,7 @@ def l2_normalize(x: Union[np.ndarray, list]) -> np.ndarray: return x / np.sqrt(np.sum(np.multiply(x, x))) -def findThreshold(model_name: str, distance_metric: str) -> float: +def find_threshold(model_name: str, distance_metric: str) -> float: base_threshold = {"cosine": 0.40, "euclidean": 0.55, "euclidean_l2": 0.75} diff --git a/deepface/modules/recognition.py b/deepface/modules/recognition.py index f678a2b..6c21e35 100644 --- a/deepface/modules/recognition.py +++ b/deepface/modules/recognition.py @@ -249,11 +249,11 @@ def find( ) if distance_metric == "cosine": - distance = dst.findCosineDistance(source_representation, target_representation) + distance = dst.find_cosine_distance(source_representation, target_representation) elif distance_metric == "euclidean": - distance = dst.findEuclideanDistance(source_representation, target_representation) + distance = dst.find_euclidean_distance(source_representation, target_representation) elif distance_metric == "euclidean_l2": - distance = dst.findEuclideanDistance( + distance = dst.find_euclidean_distance( dst.l2_normalize(source_representation), dst.l2_normalize(target_representation), ) @@ -263,7 +263,7 @@ def find( distances.append(distance) # --------------------------- - target_threshold = threshold or dst.findThreshold(model_name, distance_metric) + target_threshold = threshold or dst.find_threshold(model_name, distance_metric) result_df["threshold"] = target_threshold result_df["distance"] = distances diff --git a/deepface/modules/verification.py b/deepface/modules/verification.py index 9310e82..ab6c9dd 100644 --- a/deepface/modules/verification.py +++ b/deepface/modules/verification.py @@ -133,11 +133,11 @@ def verify( img2_representation = img2_embedding_obj[0]["embedding"] if distance_metric == "cosine": - distance = dst.findCosineDistance(img1_representation, img2_representation) + distance = dst.find_cosine_distance(img1_representation, img2_representation) elif distance_metric == "euclidean": - distance = dst.findEuclideanDistance(img1_representation, img2_representation) + distance = dst.find_euclidean_distance(img1_representation, img2_representation) elif distance_metric == "euclidean_l2": - distance = dst.findEuclideanDistance( + distance = dst.find_euclidean_distance( dst.l2_normalize(img1_representation), dst.l2_normalize(img2_representation) ) else: @@ -147,7 +147,7 @@ def verify( regions.append((img1_region, img2_region)) # ------------------------------- - threshold = dst.findThreshold(model_name, distance_metric) + threshold = dst.find_threshold(model_name, distance_metric) distance = min(distances) # best distance facial_areas = regions[np.argmin(distances)] diff --git a/tests/face-recognition-how.py b/tests/face-recognition-how.py index 36ec45b..09ad8cf 100644 --- a/tests/face-recognition-how.py +++ b/tests/face-recognition-how.py @@ -38,7 +38,7 @@ distance_vector = np.square(img1_representation - img2_representation) current_distance = np.sqrt(distance_vector.sum()) logger.info(f"Euclidean distance: {current_distance}") -threshold = distance.findThreshold(model_name=model_name, distance_metric="euclidean") +threshold = distance.find_threshold(model_name=model_name, distance_metric="euclidean") logger.info(f"Threshold for {model_name}-euclidean pair is {threshold}") if current_distance < threshold: diff --git a/tests/test_find.py b/tests/test_find.py index 8d9e34f..1d3faa7 100644 --- a/tests/test_find.py +++ b/tests/test_find.py @@ -6,7 +6,7 @@ from deepface.commons.logger import Logger logger = Logger("tests/test_find.py") -threshold = distance.findThreshold(model_name="VGG-Face", distance_metric="cosine") +threshold = distance.find_threshold(model_name="VGG-Face", distance_metric="cosine") def test_find_with_exact_path():