mirror of
https://github.com/serengil/deepface.git
synced 2025-06-06 11:35:21 +00:00
fix: documentation
This commit is contained in:
parent
79dedc08c1
commit
d3a3f2b65f
@ -54,10 +54,11 @@ def build_model(model_name: str, task: str = "facial_recognition") -> Any:
|
||||
Args:
|
||||
model_name (str): model identifier
|
||||
- VGG-Face, Facenet, Facenet512, OpenFace, DeepFace, DeepID, Dlib,
|
||||
ArcFace, SFace, GhostFaceNet, Yolo-Face for face recognition
|
||||
ArcFace, SFace, GhostFaceNet, Yolov8, Yolov11n, Yolov11s and
|
||||
Yolov11m for face recognition
|
||||
- Age, Gender, Emotion, Race for facial attributes
|
||||
- opencv, mtcnn, ssd, dlib, retinaface, mediapipe, yolov8, 'yolov11n', 'yolov11s','yolov11m', yunet,
|
||||
fastmtcnn or centerface for face detectors
|
||||
- opencv, mtcnn, ssd, dlib, retinaface, mediapipe, yolov8, yolov11n,
|
||||
yolov11s, yolov11m, yunet, fastmtcnn or centerface for face detectors
|
||||
- Fasnet for spoofing
|
||||
task (str): facial_recognition, facial_attribute, face_detector, spoofing
|
||||
default is facial_recognition
|
||||
@ -68,18 +69,18 @@ def build_model(model_name: str, task: str = "facial_recognition") -> Any:
|
||||
|
||||
|
||||
def verify(
|
||||
img1_path: Union[str, np.ndarray, List[float]],
|
||||
img2_path: Union[str, np.ndarray, List[float]],
|
||||
model_name: str = "VGG-Face",
|
||||
detector_backend: str = "opencv",
|
||||
distance_metric: str = "cosine",
|
||||
enforce_detection: bool = True,
|
||||
align: bool = True,
|
||||
expand_percentage: int = 0,
|
||||
normalization: str = "base",
|
||||
silent: bool = False,
|
||||
threshold: Optional[float] = None,
|
||||
anti_spoofing: bool = False,
|
||||
img1_path: Union[str, np.ndarray, List[float]],
|
||||
img2_path: Union[str, np.ndarray, List[float]],
|
||||
model_name: str = "VGG-Face",
|
||||
detector_backend: str = "opencv",
|
||||
distance_metric: str = "cosine",
|
||||
enforce_detection: bool = True,
|
||||
align: bool = True,
|
||||
expand_percentage: int = 0,
|
||||
normalization: str = "base",
|
||||
silent: bool = False,
|
||||
threshold: Optional[float] = None,
|
||||
anti_spoofing: bool = False,
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Verify if an image pair represents the same person or different persons.
|
||||
@ -93,7 +94,8 @@ def verify(
|
||||
or pre-calculated embeddings.
|
||||
|
||||
model_name (str): Model for face recognition. Options: VGG-Face, Facenet, Facenet512,
|
||||
OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace, GhostFaceNet and Yolo-Face (default is VGG-Face).
|
||||
OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace, GhostFaceNet, Yolov8, Yolov11n,
|
||||
Yolov11s and Yolov11m (default is VGG-Face).
|
||||
|
||||
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m', 'centerface' or 'skip'
|
||||
@ -164,14 +166,14 @@ def verify(
|
||||
|
||||
|
||||
def analyze(
|
||||
img_path: Union[str, np.ndarray],
|
||||
actions: Union[tuple, list] = ("emotion", "age", "gender", "race"),
|
||||
enforce_detection: bool = True,
|
||||
detector_backend: str = "opencv",
|
||||
align: bool = True,
|
||||
expand_percentage: int = 0,
|
||||
silent: bool = False,
|
||||
anti_spoofing: bool = False,
|
||||
img_path: Union[str, np.ndarray],
|
||||
actions: Union[tuple, list] = ("emotion", "age", "gender", "race"),
|
||||
enforce_detection: bool = True,
|
||||
detector_backend: str = "opencv",
|
||||
align: bool = True,
|
||||
expand_percentage: int = 0,
|
||||
silent: bool = False,
|
||||
anti_spoofing: bool = False,
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Analyze facial attributes such as age, gender, emotion, and race in the provided image.
|
||||
@ -187,8 +189,8 @@ def analyze(
|
||||
Set to False to avoid the exception for low-resolution images (default is True).
|
||||
|
||||
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m', 'centerface' or 'skip'
|
||||
(default is opencv).
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m',
|
||||
'centerface' or 'skip' (default is opencv).
|
||||
|
||||
distance_metric (string): Metric for measuring similarity. Options: 'cosine',
|
||||
'euclidean', 'euclidean_l2' (default is cosine).
|
||||
@ -263,20 +265,20 @@ def analyze(
|
||||
|
||||
|
||||
def find(
|
||||
img_path: Union[str, np.ndarray],
|
||||
db_path: str,
|
||||
model_name: str = "VGG-Face",
|
||||
distance_metric: str = "cosine",
|
||||
enforce_detection: bool = True,
|
||||
detector_backend: str = "opencv",
|
||||
align: bool = True,
|
||||
expand_percentage: int = 0,
|
||||
threshold: Optional[float] = None,
|
||||
normalization: str = "base",
|
||||
silent: bool = False,
|
||||
refresh_database: bool = True,
|
||||
anti_spoofing: bool = False,
|
||||
batched: bool = False,
|
||||
img_path: Union[str, np.ndarray],
|
||||
db_path: str,
|
||||
model_name: str = "VGG-Face",
|
||||
distance_metric: str = "cosine",
|
||||
enforce_detection: bool = True,
|
||||
detector_backend: str = "opencv",
|
||||
align: bool = True,
|
||||
expand_percentage: int = 0,
|
||||
threshold: Optional[float] = None,
|
||||
normalization: str = "base",
|
||||
silent: bool = False,
|
||||
refresh_database: bool = True,
|
||||
anti_spoofing: bool = False,
|
||||
batched: bool = False,
|
||||
) -> Union[List[pd.DataFrame], List[List[Dict[str, Any]]]]:
|
||||
"""
|
||||
Identify individuals in a database
|
||||
@ -289,7 +291,8 @@ def find(
|
||||
in the database will be considered in the decision-making process.
|
||||
|
||||
model_name (str): Model for face recognition. Options: VGG-Face, Facenet, Facenet512,
|
||||
OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace, GhostFaceNet and Yolo-Face (default is VGG-Face).
|
||||
OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace, GhostFaceNet, Yolov8, Yolov11n,
|
||||
Yolov11s and Yolov11m (default is VGG-Face).
|
||||
|
||||
distance_metric (string): Metric for measuring similarity. Options: 'cosine',
|
||||
'euclidean', 'euclidean_l2' (default is cosine).
|
||||
@ -298,8 +301,8 @@ def find(
|
||||
Set to False to avoid the exception for low-resolution images (default is True).
|
||||
|
||||
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m', 'centerface' or 'skip'
|
||||
(default is opencv).
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m',
|
||||
'centerface' or 'skip' (default is opencv).
|
||||
|
||||
align (boolean): Perform alignment based on the eye positions (default is True).
|
||||
|
||||
@ -369,15 +372,15 @@ def find(
|
||||
|
||||
|
||||
def represent(
|
||||
img_path: Union[str, np.ndarray],
|
||||
model_name: str = "VGG-Face",
|
||||
enforce_detection: bool = True,
|
||||
detector_backend: str = "opencv",
|
||||
align: bool = True,
|
||||
expand_percentage: int = 0,
|
||||
normalization: str = "base",
|
||||
anti_spoofing: bool = False,
|
||||
max_faces: Optional[int] = None,
|
||||
img_path: Union[str, np.ndarray],
|
||||
model_name: str = "VGG-Face",
|
||||
enforce_detection: bool = True,
|
||||
detector_backend: str = "opencv",
|
||||
align: bool = True,
|
||||
expand_percentage: int = 0,
|
||||
normalization: str = "base",
|
||||
anti_spoofing: bool = False,
|
||||
max_faces: Optional[int] = None,
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Represent facial images as multi-dimensional vector embeddings.
|
||||
@ -388,16 +391,16 @@ def represent(
|
||||
include information for each detected face.
|
||||
|
||||
model_name (str): Model for face recognition. Options: VGG-Face, Facenet, Facenet512,
|
||||
OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace, GhostFaceNet and Yolo-Face
|
||||
(default is VGG-Face.).
|
||||
OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace, GhostFaceNet, Yolov8, Yolov11n,
|
||||
Yolov11s and Yolov11m (default is VGG-Face.).
|
||||
|
||||
enforce_detection (boolean): If no face is detected in an image, raise an exception.
|
||||
Default is True. Set to False to avoid the exception for low-resolution images
|
||||
(default is True).
|
||||
|
||||
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m', 'centerface' or 'skip'
|
||||
(default is opencv).
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m',
|
||||
'centerface' or 'skip' (default is opencv).
|
||||
|
||||
align (boolean): Perform alignment based on the eye positions (default is True).
|
||||
|
||||
@ -441,15 +444,15 @@ def represent(
|
||||
|
||||
|
||||
def stream(
|
||||
db_path: str = "",
|
||||
model_name: str = "VGG-Face",
|
||||
detector_backend: str = "opencv",
|
||||
distance_metric: str = "cosine",
|
||||
enable_face_analysis: bool = True,
|
||||
source: Any = 0,
|
||||
time_threshold: int = 5,
|
||||
frame_threshold: int = 5,
|
||||
anti_spoofing: bool = False,
|
||||
db_path: str = "",
|
||||
model_name: str = "VGG-Face",
|
||||
detector_backend: str = "opencv",
|
||||
distance_metric: str = "cosine",
|
||||
enable_face_analysis: bool = True,
|
||||
source: Any = 0,
|
||||
time_threshold: int = 5,
|
||||
frame_threshold: int = 5,
|
||||
anti_spoofing: bool = False,
|
||||
) -> None:
|
||||
"""
|
||||
Run real time face recognition and facial attribute analysis
|
||||
@ -459,11 +462,12 @@ def stream(
|
||||
in the database will be considered in the decision-making process.
|
||||
|
||||
model_name (str): Model for face recognition. Options: VGG-Face, Facenet, Facenet512,
|
||||
OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace, GhostFaceNet and Yolo-Face (default is VGG-Face).
|
||||
OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace, GhostFaceNet, Yolov8, Yolov11n,
|
||||
Yolov11s and Yolov11m (default is VGG-Face).
|
||||
|
||||
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m', 'centerface' or 'skip'
|
||||
(default is opencv).
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m',
|
||||
'centerface' or 'skip' (default is opencv).
|
||||
|
||||
distance_metric (string): Metric for measuring similarity. Options: 'cosine',
|
||||
'euclidean', 'euclidean_l2' (default is cosine).
|
||||
@ -499,15 +503,15 @@ def stream(
|
||||
|
||||
|
||||
def extract_faces(
|
||||
img_path: Union[str, np.ndarray],
|
||||
detector_backend: str = "opencv",
|
||||
enforce_detection: bool = True,
|
||||
align: bool = True,
|
||||
expand_percentage: int = 0,
|
||||
grayscale: bool = False,
|
||||
color_face: str = "rgb",
|
||||
normalize_face: bool = True,
|
||||
anti_spoofing: bool = False,
|
||||
img_path: Union[str, np.ndarray],
|
||||
detector_backend: str = "opencv",
|
||||
enforce_detection: bool = True,
|
||||
align: bool = True,
|
||||
expand_percentage: int = 0,
|
||||
grayscale: bool = False,
|
||||
color_face: str = "rgb",
|
||||
normalize_face: bool = True,
|
||||
anti_spoofing: bool = False,
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Extract faces from a given image
|
||||
@ -517,8 +521,8 @@ def extract_faces(
|
||||
as a string, numpy array (BGR), or base64 encoded images.
|
||||
|
||||
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m', 'centerface' or 'skip'
|
||||
(default is opencv).
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m',
|
||||
'centerface' or 'skip' (default is opencv).
|
||||
|
||||
enforce_detection (boolean): If no face is detected in an image, raise an exception.
|
||||
Set to False to avoid the exception for low-resolution images (default is True).
|
||||
@ -584,11 +588,11 @@ def cli() -> None:
|
||||
|
||||
|
||||
def detectFace(
|
||||
img_path: Union[str, np.ndarray],
|
||||
target_size: tuple = (224, 224),
|
||||
detector_backend: str = "opencv",
|
||||
enforce_detection: bool = True,
|
||||
align: bool = True,
|
||||
img_path: Union[str, np.ndarray],
|
||||
target_size: tuple = (224, 224),
|
||||
detector_backend: str = "opencv",
|
||||
enforce_detection: bool = True,
|
||||
align: bool = True,
|
||||
) -> Union[np.ndarray, None]:
|
||||
"""
|
||||
Deprecated face detection function. Use extract_faces for same functionality.
|
||||
@ -601,8 +605,8 @@ def detectFace(
|
||||
added to resize the image (default is (224, 224)).
|
||||
|
||||
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m', 'centerface' or 'skip'
|
||||
(default is opencv).
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m',
|
||||
'centerface' or 'skip' (default is opencv).
|
||||
|
||||
enforce_detection (boolean): If no face is detected in an image, raise an exception.
|
||||
Set to False to avoid the exception for low-resolution images (default is True).
|
||||
|
@ -94,6 +94,8 @@ class YoloDetectorClient(Detector):
|
||||
|
||||
right_eye = None
|
||||
left_eye = None
|
||||
|
||||
# yolo-facev8 is detecting eyes through keypoints, while for v11 keypoints are always None
|
||||
if result.keypoints is not None:
|
||||
# right_eye_conf = result.keypoints.conf[0][0]
|
||||
# left_eye_conf = result.keypoints.conf[0][1]
|
||||
|
@ -35,8 +35,8 @@ def analyze(
|
||||
Set to False to avoid the exception for low-resolution images (default is True).
|
||||
|
||||
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m', 'centerface' or 'skip'
|
||||
(default is opencv).
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m',
|
||||
'centerface' or 'skip' (default is opencv).
|
||||
|
||||
distance_metric (string): Metric for measuring similarity. Options: 'cosine',
|
||||
'euclidean', 'euclidean_l2' (default is cosine).
|
||||
|
@ -38,8 +38,8 @@ def extract_faces(
|
||||
as a string, numpy array (BGR), or base64 encoded images.
|
||||
|
||||
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m', 'centerface' or 'skip'
|
||||
(default is opencv)
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m',
|
||||
'centerface' or 'skip' (default is opencv)
|
||||
|
||||
enforce_detection (boolean): If no face is detected in an image, raise an exception.
|
||||
Default is True. Set to False to avoid the exception for low-resolution images.
|
||||
|
@ -37,7 +37,7 @@ def build_model(task: str, model_name: str) -> Any:
|
||||
task (str): facial_recognition, facial_attribute, face_detector, spoofing
|
||||
model_name (str): model identifier
|
||||
- VGG-Face, Facenet, Facenet512, OpenFace, DeepFace, DeepID, Dlib,
|
||||
ArcFace, SFace, GhostFaceNet for face recognition
|
||||
ArcFace, SFace, GhostFaceNet, Yolov8, Yolov11n, Yolov11s and Yolov11m for face recognition
|
||||
- Age, Gender, Emotion, Race for facial attributes
|
||||
- opencv, mtcnn, ssd, dlib, retinaface, mediapipe, yolov8, 'yolov11n', 'yolov11s', 'yolov11m', yunet,
|
||||
fastmtcnn or centerface for face detectors
|
||||
@ -61,10 +61,10 @@ def build_model(task: str, model_name: str) -> Any:
|
||||
"ArcFace": ArcFace.ArcFaceClient,
|
||||
"SFace": SFace.SFaceClient,
|
||||
"GhostFaceNet": GhostFaceNet.GhostFaceNetClient,
|
||||
"yolov8": YoloFacialRecognition.YoloFacialRecognitionClientV8n,
|
||||
"yolov11n": YoloFacialRecognition.YoloFacialRecognitionClientV11n,
|
||||
"yolov11s": YoloFacialRecognition.YoloFacialRecognitionClientV11s,
|
||||
"yolov11m": YoloFacialRecognition.YoloFacialRecognitionClientV11m
|
||||
"Yolov8": YoloFacialRecognition.YoloFacialRecognitionClientV8n,
|
||||
"Yolov11n": YoloFacialRecognition.YoloFacialRecognitionClientV11n,
|
||||
"Yolov11s": YoloFacialRecognition.YoloFacialRecognitionClientV11s,
|
||||
"Yolov11m": YoloFacialRecognition.YoloFacialRecognitionClientV11m
|
||||
},
|
||||
"spoofing": {
|
||||
"Fasnet": FasNet.Fasnet,
|
||||
|
@ -45,7 +45,8 @@ def find(
|
||||
in the database will be considered in the decision-making process.
|
||||
|
||||
model_name (str): Model for face recognition. Options: VGG-Face, Facenet, Facenet512,
|
||||
OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace and GhostFaceNet (default is VGG-Face).
|
||||
OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace, GhostFaceNet, Yolov8, Yolov11n,
|
||||
Yolov11s and Yolov11m (default is VGG-Face).
|
||||
|
||||
distance_metric (string): Metric for measuring similarity. Options: 'cosine',
|
||||
'euclidean', 'euclidean_l2'.
|
||||
@ -54,7 +55,8 @@ def find(
|
||||
Default is True. Set to False to avoid the exception for low-resolution images.
|
||||
|
||||
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8','yolov11n', 'yolov11s', 'yolov11m', 'centerface' or 'skip'.
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8','yolov11n', 'yolov11s',
|
||||
'yolov11m', 'centerface' or 'skip'.
|
||||
|
||||
align (boolean): Perform alignment based on the eye positions.
|
||||
|
||||
@ -359,7 +361,8 @@ def __find_bulk_embeddings(
|
||||
employees (list): list of exact image paths
|
||||
|
||||
model_name (str): Model for face recognition. Options: VGG-Face, Facenet, Facenet512,
|
||||
OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace and GhostFaceNet (default is VGG-Face).
|
||||
OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace, GhostFaceNet, Yolov8, Yolov11n,
|
||||
Yolov11s and Yolov11m (default is VGG-Face).
|
||||
|
||||
detector_backend (str): face detector model name
|
||||
|
||||
@ -474,7 +477,8 @@ def find_batched(
|
||||
(used for anti-spoofing).
|
||||
|
||||
model_name (str): Model for face recognition. Options: VGG-Face, Facenet, Facenet512,
|
||||
OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace and GhostFaceNet (default is VGG-Face).
|
||||
OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace, GhostFaceNet, Yolov8, Yolov11n,
|
||||
Yolov11s and Yolov11m (default is VGG-Face).
|
||||
|
||||
distance_metric (string): Metric for measuring similarity. Options: 'cosine',
|
||||
'euclidean', 'euclidean_l2'.
|
||||
@ -483,7 +487,8 @@ def find_batched(
|
||||
Default is True. Set to False to avoid the exception for low-resolution images.
|
||||
|
||||
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m', 'centerface' or 'skip'.
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s',
|
||||
'yolov11m', 'centerface' or 'skip'.
|
||||
|
||||
align (boolean): Perform alignment based on the eye positions.
|
||||
|
||||
|
@ -30,7 +30,7 @@ def represent(
|
||||
include information for each detected face.
|
||||
|
||||
model_name (str): Model for face recognition. Options: VGG-Face, Facenet, Facenet512,
|
||||
OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace and GhostFaceNet
|
||||
OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace, GhostFaceNet, Yolov8, Yolov11n, Yolov11s and Yolov11m
|
||||
|
||||
enforce_detection (boolean): If no face is detected in an image, raise an exception.
|
||||
Default is True. Set to False to avoid the exception for low-resolution images.
|
||||
|
@ -42,11 +42,12 @@ def analysis(
|
||||
in the database will be considered in the decision-making process.
|
||||
|
||||
model_name (str): Model for face recognition. Options: VGG-Face, Facenet, Facenet512,
|
||||
OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace and GhostFaceNet (default is VGG-Face).
|
||||
OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace, GhostFaceNet, Yolov8, Yolov11n,
|
||||
Yolov11s and Yolov11m (default is VGG-Face).
|
||||
|
||||
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m', 'centerface' or 'skip'
|
||||
(default is opencv).
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m',
|
||||
'centerface' or 'skip' (default is opencv).
|
||||
|
||||
distance_metric (string): Metric for measuring similarity. Options: 'cosine',
|
||||
'euclidean', 'euclidean_l2' (default is cosine).
|
||||
@ -190,10 +191,11 @@ def search_identity(
|
||||
db_path (string): Path to the folder containing image files. All detected faces
|
||||
in the database will be considered in the decision-making process.
|
||||
model_name (str): Model for face recognition. Options: VGG-Face, Facenet, Facenet512,
|
||||
OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace and GhostFaceNet (default is VGG-Face).
|
||||
OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace, GhostFaceNet, Yolov8, Yolov11n,
|
||||
Yolov11s and Yolov11m (default is VGG-Face).
|
||||
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m', 'centerface' or 'skip'
|
||||
(default is opencv).
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m',
|
||||
'centerface' or 'skip' (default is opencv).
|
||||
distance_metric (string): Metric for measuring similarity. Options: 'cosine',
|
||||
'euclidean', 'euclidean_l2' (default is cosine).
|
||||
Returns:
|
||||
@ -374,8 +376,8 @@ def grab_facial_areas(
|
||||
Args:
|
||||
img (np.ndarray): image itself
|
||||
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m', 'centerface' or 'skip'
|
||||
(default is opencv).
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m',
|
||||
'centerface' or 'skip' (default is opencv).
|
||||
threshold (int): threshold for facial area, discard smaller ones
|
||||
Returns
|
||||
result (list): list of tuple with x, y, w and h coordinates
|
||||
@ -443,8 +445,8 @@ def perform_facial_recognition(
|
||||
db_path (string): Path to the folder containing image files. All detected faces
|
||||
in the database will be considered in the decision-making process.
|
||||
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m', 'centerface' or 'skip'
|
||||
(default is opencv).
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s',
|
||||
'yolov11m', 'centerface' or 'skip' (default is opencv).
|
||||
distance_metric (string): Metric for measuring similarity. Options: 'cosine',
|
||||
'euclidean', 'euclidean_l2' (default is cosine).
|
||||
model_name (str): Model for face recognition. Options: VGG-Face, Facenet, Facenet512,
|
||||
|
@ -44,11 +44,12 @@ def verify(
|
||||
or pre-calculated embeddings.
|
||||
|
||||
model_name (str): Model for face recognition. Options: VGG-Face, Facenet, Facenet512,
|
||||
OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace and GhostFaceNet (default is VGG-Face).
|
||||
OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace, GhostFaceNet, Yolov8, Yolov11n,
|
||||
Yolov11s and Yolov11m (default is VGG-Face).
|
||||
|
||||
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m', 'centerface' or 'skip'
|
||||
(default is opencv)
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m',
|
||||
'centerface' or 'skip' (default is opencv)
|
||||
|
||||
distance_metric (string): Metric for measuring similarity. Options: 'cosine',
|
||||
'euclidean', 'euclidean_l2' (default is cosine).
|
||||
|
Loading…
x
Reference in New Issue
Block a user