Refactoring and requirements.

This commit is contained in:
Vincent STRAGIER 2023-06-23 23:31:50 +02:00
parent 776bd11707
commit dcf94150f2
4 changed files with 66 additions and 75 deletions

View File

@ -9,7 +9,7 @@ from deepface.detectors import (
MtcnnWrapper,
RetinaFaceWrapper,
MediapipeWrapper,
Yolov8faceWrapper,
YoloWrapper,
)
@ -23,7 +23,7 @@ def build_model(detector_backend):
"mtcnn": MtcnnWrapper.build_model,
"retinaface": RetinaFaceWrapper.build_model,
"mediapipe": MediapipeWrapper.build_model,
"yolov8n": Yolov8faceWrapper.build_model("yolov8n"),
"yolov8n": YoloWrapper.build_model,
}
if not "face_detector_obj" in globals():
@ -66,7 +66,7 @@ def detect_faces(face_detector, detector_backend, img, align=True):
"mtcnn": MtcnnWrapper.detect_face,
"retinaface": RetinaFaceWrapper.detect_face,
"mediapipe": MediapipeWrapper.detect_face,
"yolov8n": Yolov8faceWrapper.detect_face,
"yolov8n": YoloWrapper.detect_face,
}
detect_face_fn = backends.get(detector_backend)

View File

@ -0,0 +1,61 @@
from deepface.detectors import FaceDetector
# Model's weights paths
PATH = "/.deepface/weights/yolov8n-face.pt"
# Google Drive URL
WEIGHT_URL = "https://drive.google.com/uc?id=1qcr9DbgsX3ryrz2uU8w4Xm3cOrRywXqb"
# Confidence thresholds for landmarks detection
# used in alignment_procedure function
LANDMARKS_CONFIDENCE_THRESHOLD = 0.5
def build_model():
"""Build YOLO (yolov8n-face) model"""
import gdown
import os
# Import the Ultralytics YOLO model
from ultralytics import YOLO
from deepface.commons.functions import get_deepface_home
weight_path = f"{get_deepface_home()}{PATH}"
# Download the model's weights if they don't exist
if not os.path.isfile(weight_path):
gdown.download(WEIGHT_URL, weight_path, quiet=False)
print(f"Downloaded YOLO model {os.path.basename(weight_path)}")
# Return face_detector
return YOLO(weight_path)
def detect_face(face_detector, img, align=False):
resp = []
# Detect faces
results = face_detector.predict(
img, verbose=False, show=False, conf=0.25)[0]
# For each face, extract the bounding box, the landmarks and confidence
for result in results:
# Extract the bounding box and the confidence
x, y, w, h = result.boxes.xywh.tolist()[0]
confidence = result.boxes.conf.tolist()[0]
x, y, w, h = int(x - w / 2), int(y - h / 2), int(w), int(h)
detected_face = img[y: y + h, x: x + w].copy()
if align:
# Extract landmarks
left_eye, right_eye, _, _, _ = result.keypoints.tolist()
# Check the landmarks confidence before alignment
if left_eye[2] > LANDMARKS_CONFIDENCE_THRESHOLD and right_eye[2] > LANDMARKS_CONFIDENCE_THRESHOLD:
detected_face = FaceDetector.alignment_procedure(
detected_face, left_eye[:2], right_eye[:2]
)
resp.append((detected_face, [x, y, w, h], confidence))
return resp

View File

@ -1,71 +0,0 @@
from deepface.detectors import FaceDetector
# Models names and paths
PATHS = {
"yolov8n": "/.deepface/weights/yolov8n-face.pt",
}
# Google Drive base URL
BASE_URL = "https://drive.google.com/uc?id="
# Models' Google Drive IDs
IDS = {
"yolov8n": "1qcr9DbgsX3ryrz2uU8w4Xm3cOrRywXqb",
}
def build_model(model: str):
"""Function factory for YOLO models"""
from deepface.commons.functions import get_deepface_home
# Get model's weights path and Google Drive URL
func_weights_path = f"{get_deepface_home()}{PATHS[model]}"
func_url = f"{BASE_URL}{IDS[model]}"
# Define function to build the model
def _build_model(weights_path: str = func_weights_path, url: str = func_url):
import gdown
import os
# Import the Ultralytics YOLO model
from ultralytics import YOLO
# Download the model's weights if they don't exist
if not os.path.isfile(weights_path):
gdown.download(url, weights_path, quiet=False)
print(f"Downloaded YOLO model {os.path.basename(PATHS[model])}")
# Return face_detector
return YOLO(weights_path)
return _build_model
def detect_face(face_detector, img, align=False):
resp = []
# Detect faces
results = face_detector.predict(
img, verbose=False, show=False, conf=0.25)[0]
# For each face, extract the bounding box, the landmarks and confidence
for result in results:
# Extract the bounding box and the confidence
x, y, w, h = result.boxes.xywh.tolist()[0]
confidence = result.boxes.conf.tolist()[0]
x, y, w, h = int(x - w / 2), int(y - h / 2), int(w), int(h)
detected_face = img[y: y + h, x: x + w].copy()
if align:
# Extract landmarks
left_eye, right_eye, _, _, _ = result.keypoints.tolist()
# Check the landmarks confidence before alignment
if left_eye[2] > 0.5 and right_eye[2] > 0.5:
detected_face = FaceDetector.alignment_procedure(
detected_face, left_eye[:2], right_eye[:2]
)
resp.append((detected_face, [x, y, w, h], confidence))
return resp

View File

@ -1,3 +1,4 @@
opencv-contrib-python>=4.3.0.36
mediapipe>=0.8.7.3
dlib>=19.20.0
dlib>=19.20.0
ultralytics @ git+https://github.com/derronqi/yolov8-face.git@b623989575bdb78601b5ca717851e3d63ca9e01c