mirror of
https://github.com/serengil/deepface.git
synced 2025-06-05 19:15:23 +00:00
Refactoring and requirements.
This commit is contained in:
parent
776bd11707
commit
dcf94150f2
@ -9,7 +9,7 @@ from deepface.detectors import (
|
||||
MtcnnWrapper,
|
||||
RetinaFaceWrapper,
|
||||
MediapipeWrapper,
|
||||
Yolov8faceWrapper,
|
||||
YoloWrapper,
|
||||
)
|
||||
|
||||
|
||||
@ -23,7 +23,7 @@ def build_model(detector_backend):
|
||||
"mtcnn": MtcnnWrapper.build_model,
|
||||
"retinaface": RetinaFaceWrapper.build_model,
|
||||
"mediapipe": MediapipeWrapper.build_model,
|
||||
"yolov8n": Yolov8faceWrapper.build_model("yolov8n"),
|
||||
"yolov8n": YoloWrapper.build_model,
|
||||
}
|
||||
|
||||
if not "face_detector_obj" in globals():
|
||||
@ -66,7 +66,7 @@ def detect_faces(face_detector, detector_backend, img, align=True):
|
||||
"mtcnn": MtcnnWrapper.detect_face,
|
||||
"retinaface": RetinaFaceWrapper.detect_face,
|
||||
"mediapipe": MediapipeWrapper.detect_face,
|
||||
"yolov8n": Yolov8faceWrapper.detect_face,
|
||||
"yolov8n": YoloWrapper.detect_face,
|
||||
}
|
||||
|
||||
detect_face_fn = backends.get(detector_backend)
|
||||
|
61
deepface/detectors/YoloWrapper.py
Normal file
61
deepface/detectors/YoloWrapper.py
Normal file
@ -0,0 +1,61 @@
|
||||
from deepface.detectors import FaceDetector
|
||||
|
||||
# Model's weights paths
|
||||
PATH = "/.deepface/weights/yolov8n-face.pt"
|
||||
|
||||
# Google Drive URL
|
||||
WEIGHT_URL = "https://drive.google.com/uc?id=1qcr9DbgsX3ryrz2uU8w4Xm3cOrRywXqb"
|
||||
|
||||
# Confidence thresholds for landmarks detection
|
||||
# used in alignment_procedure function
|
||||
LANDMARKS_CONFIDENCE_THRESHOLD = 0.5
|
||||
|
||||
|
||||
def build_model():
|
||||
"""Build YOLO (yolov8n-face) model"""
|
||||
import gdown
|
||||
import os
|
||||
|
||||
# Import the Ultralytics YOLO model
|
||||
from ultralytics import YOLO
|
||||
|
||||
from deepface.commons.functions import get_deepface_home
|
||||
weight_path = f"{get_deepface_home()}{PATH}"
|
||||
|
||||
# Download the model's weights if they don't exist
|
||||
if not os.path.isfile(weight_path):
|
||||
gdown.download(WEIGHT_URL, weight_path, quiet=False)
|
||||
print(f"Downloaded YOLO model {os.path.basename(weight_path)}")
|
||||
|
||||
# Return face_detector
|
||||
return YOLO(weight_path)
|
||||
|
||||
|
||||
def detect_face(face_detector, img, align=False):
|
||||
resp = []
|
||||
|
||||
# Detect faces
|
||||
results = face_detector.predict(
|
||||
img, verbose=False, show=False, conf=0.25)[0]
|
||||
|
||||
# For each face, extract the bounding box, the landmarks and confidence
|
||||
for result in results:
|
||||
# Extract the bounding box and the confidence
|
||||
x, y, w, h = result.boxes.xywh.tolist()[0]
|
||||
confidence = result.boxes.conf.tolist()[0]
|
||||
|
||||
x, y, w, h = int(x - w / 2), int(y - h / 2), int(w), int(h)
|
||||
detected_face = img[y: y + h, x: x + w].copy()
|
||||
|
||||
if align:
|
||||
# Extract landmarks
|
||||
left_eye, right_eye, _, _, _ = result.keypoints.tolist()
|
||||
# Check the landmarks confidence before alignment
|
||||
if left_eye[2] > LANDMARKS_CONFIDENCE_THRESHOLD and right_eye[2] > LANDMARKS_CONFIDENCE_THRESHOLD:
|
||||
detected_face = FaceDetector.alignment_procedure(
|
||||
detected_face, left_eye[:2], right_eye[:2]
|
||||
)
|
||||
|
||||
resp.append((detected_face, [x, y, w, h], confidence))
|
||||
|
||||
return resp
|
@ -1,71 +0,0 @@
|
||||
from deepface.detectors import FaceDetector
|
||||
|
||||
# Models names and paths
|
||||
PATHS = {
|
||||
"yolov8n": "/.deepface/weights/yolov8n-face.pt",
|
||||
}
|
||||
|
||||
# Google Drive base URL
|
||||
BASE_URL = "https://drive.google.com/uc?id="
|
||||
|
||||
# Models' Google Drive IDs
|
||||
IDS = {
|
||||
"yolov8n": "1qcr9DbgsX3ryrz2uU8w4Xm3cOrRywXqb",
|
||||
}
|
||||
|
||||
|
||||
def build_model(model: str):
|
||||
"""Function factory for YOLO models"""
|
||||
from deepface.commons.functions import get_deepface_home
|
||||
|
||||
# Get model's weights path and Google Drive URL
|
||||
func_weights_path = f"{get_deepface_home()}{PATHS[model]}"
|
||||
func_url = f"{BASE_URL}{IDS[model]}"
|
||||
|
||||
# Define function to build the model
|
||||
def _build_model(weights_path: str = func_weights_path, url: str = func_url):
|
||||
import gdown
|
||||
import os
|
||||
|
||||
# Import the Ultralytics YOLO model
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Download the model's weights if they don't exist
|
||||
if not os.path.isfile(weights_path):
|
||||
gdown.download(url, weights_path, quiet=False)
|
||||
print(f"Downloaded YOLO model {os.path.basename(PATHS[model])}")
|
||||
|
||||
# Return face_detector
|
||||
return YOLO(weights_path)
|
||||
|
||||
return _build_model
|
||||
|
||||
|
||||
def detect_face(face_detector, img, align=False):
|
||||
resp = []
|
||||
|
||||
# Detect faces
|
||||
results = face_detector.predict(
|
||||
img, verbose=False, show=False, conf=0.25)[0]
|
||||
|
||||
# For each face, extract the bounding box, the landmarks and confidence
|
||||
for result in results:
|
||||
# Extract the bounding box and the confidence
|
||||
x, y, w, h = result.boxes.xywh.tolist()[0]
|
||||
confidence = result.boxes.conf.tolist()[0]
|
||||
|
||||
x, y, w, h = int(x - w / 2), int(y - h / 2), int(w), int(h)
|
||||
detected_face = img[y: y + h, x: x + w].copy()
|
||||
|
||||
if align:
|
||||
# Extract landmarks
|
||||
left_eye, right_eye, _, _, _ = result.keypoints.tolist()
|
||||
# Check the landmarks confidence before alignment
|
||||
if left_eye[2] > 0.5 and right_eye[2] > 0.5:
|
||||
detected_face = FaceDetector.alignment_procedure(
|
||||
detected_face, left_eye[:2], right_eye[:2]
|
||||
)
|
||||
|
||||
resp.append((detected_face, [x, y, w, h], confidence))
|
||||
|
||||
return resp
|
@ -1,3 +1,4 @@
|
||||
opencv-contrib-python>=4.3.0.36
|
||||
mediapipe>=0.8.7.3
|
||||
dlib>=19.20.0
|
||||
dlib>=19.20.0
|
||||
ultralytics @ git+https://github.com/derronqi/yolov8-face.git@b623989575bdb78601b5ca717851e3d63ca9e01c
|
Loading…
x
Reference in New Issue
Block a user