mirror of
https://github.com/serengil/deepface.git
synced 2025-06-07 12:05:22 +00:00
Merge pull request #965 from serengil/feat-task-2101-deepface-interface-docstrings
cosmetic changes in docstrings of interface functions
This commit is contained in:
commit
ddf008d396
@ -61,34 +61,38 @@ def verify(
|
||||
normalization: str = "base",
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
This function verifies an image pair is same person or different persons. In the background,
|
||||
verification function represents facial images as vectors and then calculates the similarity
|
||||
between those vectors. Vectors of same person images should have more similarity (or less
|
||||
distance) than vectors of different persons.
|
||||
Verify if an image pair represents the same person or different persons.
|
||||
|
||||
Parameters:
|
||||
img1_path, img2_path: exact image path as string. numpy array (BGR) or based64 encoded
|
||||
images are also welcome. If one of pair has more than one face, then we will compare the
|
||||
face pair with max similarity.
|
||||
The verification function converts facial images to vectors and calculates the similarity
|
||||
between those vectors. Vectors of images of the same person should exhibit higher similarity
|
||||
(or lower distance) than vectors of images of different persons.
|
||||
|
||||
model_name (str): VGG-Face, Facenet, Facenet512, OpenFace, DeepFace, DeepID, Dlib
|
||||
, ArcFace and SFace
|
||||
Args:
|
||||
img1_path (str or np.ndarray): Path to the first image. Accepts exact image path
|
||||
as a string, numpy array (BGR), or base64 encoded images.
|
||||
|
||||
distance_metric (string): cosine, euclidean, euclidean_l2
|
||||
img2_path (str or np.ndarray): Path to the second image. Accepts exact image path
|
||||
as a string, numpy array (BGR), or base64 encoded images.
|
||||
|
||||
enforce_detection (boolean): If no face could not be detected in an image, then this
|
||||
function will return exception by default. Set this to False not to have this exception.
|
||||
This might be convenient for low resolution images.
|
||||
model_name (str): Model for face recognition. Options: VGG-Face, Facenet, Facenet512,
|
||||
OpenFace, DeepFace, DeepID, Dlib, ArcFace and SFace
|
||||
|
||||
detector_backend (string): set face detector backend to opencv, retinaface, mtcnn, ssd,
|
||||
dlib, mediapipe or yolov8.
|
||||
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8'.
|
||||
|
||||
align (boolean): alignment according to the eye positions.
|
||||
distance_metric (string): Metric for measuring similarity. Options: 'cosine',
|
||||
'euclidean', 'euclidean_l2'.
|
||||
|
||||
normalization (string): normalize the input image before feeding to model
|
||||
enforce_detection (boolean): If no face is detected in an image, raise an exception.
|
||||
Default is True. Set to False to avoid the exception for low-resolution images.
|
||||
|
||||
align (bool): Flag to enable face alignment (default is True).
|
||||
|
||||
normalization (string): Normalize the input image before feeding it to the model.
|
||||
Default is base. Options: base, raw, Facenet, Facenet2018, VGGFace, VGGFace2, ArcFace
|
||||
|
||||
Returns:
|
||||
Verify function returns a dictionary.
|
||||
result (dict): A dictionary containing verification results.
|
||||
|
||||
{
|
||||
"verified": True
|
||||
@ -102,7 +106,6 @@ def verify(
|
||||
}
|
||||
, "time": 2
|
||||
}
|
||||
|
||||
"""
|
||||
|
||||
return verification.verify(
|
||||
@ -126,31 +129,32 @@ def analyze(
|
||||
silent: bool = False,
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
This function analyzes facial attributes including age, gender, emotion and race.
|
||||
In the background, analysis function builds convolutional neural network models to
|
||||
classify age, gender, emotion and race of the input image.
|
||||
Analyze facial attributes such as age, gender, emotion, and race in the provided image.
|
||||
|
||||
Parameters:
|
||||
img_path: exact image path, numpy array (BGR) or base64 encoded image could be passed.
|
||||
If source image has more than one face, then result will be size of number of faces
|
||||
appearing in the image.
|
||||
Args:
|
||||
img_path (str or np.ndarray): The exact path to the image, a numpy array in BGR format,
|
||||
or a base64 encoded image. If the source image contains multiple faces, the result will
|
||||
include information for each detected face.
|
||||
|
||||
actions (tuple): The default is ('age', 'gender', 'emotion', 'race'). You can drop
|
||||
some of those attributes.
|
||||
actions (tuple): Attributes to analyze. The default is ('age', 'gender', 'emotion', 'race').
|
||||
You can exclude some of these attributes from the analysis if needed.
|
||||
|
||||
enforce_detection (bool): The function throws exception if no face detected by default.
|
||||
Set this to False if you don't want to get exception. This might be convenient for low
|
||||
resolution images.
|
||||
enforce_detection (boolean): If no face is detected in an image, raise an exception.
|
||||
Default is True. Set to False to avoid the exception for low-resolution images.
|
||||
|
||||
detector_backend (string): set face detector backend to opencv, retinaface, mtcnn, ssd,
|
||||
dlib, mediapipe or yolov8.
|
||||
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8'.
|
||||
|
||||
align (boolean): alignment according to the eye positions.
|
||||
distance_metric (string): Metric for measuring similarity. Options: 'cosine',
|
||||
'euclidean', 'euclidean_l2'.
|
||||
|
||||
silent (boolean): disable (some) log messages
|
||||
align (boolean): Perform alignment based on the eye positions.
|
||||
|
||||
silent (boolean): Suppress or allow some log messages for a quieter analysis process.
|
||||
|
||||
Returns:
|
||||
The function returns a list of dictionaries for each face appearing in the image.
|
||||
results (List[Dict[str, Any]]): A list of dictionaries, where each dictionary represents
|
||||
the analysis results for a detected face. Example:
|
||||
|
||||
[
|
||||
{
|
||||
@ -206,38 +210,47 @@ def find(
|
||||
silent: bool = False,
|
||||
) -> List[pd.DataFrame]:
|
||||
"""
|
||||
This function applies verification several times and find the identities in a database
|
||||
Identify individuals in a database
|
||||
|
||||
Parameters:
|
||||
img_path: exact image path, numpy array (BGR) or based64 encoded image.
|
||||
Source image can have many faces. Then, result will be the size of number of
|
||||
faces in the source image.
|
||||
Args:
|
||||
img_path (str or np.ndarray): The exact path to the image, a numpy array in BGR format,
|
||||
or a base64 encoded image. If the source image contains multiple faces, the result will
|
||||
include information for each detected face.
|
||||
|
||||
db_path (string): You should store some image files in a folder and pass the
|
||||
exact folder path to this. A database image can also have many faces.
|
||||
Then, all detected faces in db side will be considered in the decision.
|
||||
db_path (string): Path to the folder containing image files. All detected faces
|
||||
in the database will be considered in the decision-making process.
|
||||
|
||||
model_name (string): VGG-Face, Facenet, Facenet512, OpenFace, DeepFace, DeepID,
|
||||
Dlib, ArcFace, SFace or Ensemble
|
||||
model_name (str): Model for face recognition. Options: VGG-Face, Facenet, Facenet512,
|
||||
OpenFace, DeepFace, DeepID, Dlib, ArcFace and SFace
|
||||
|
||||
distance_metric (string): cosine, euclidean, euclidean_l2
|
||||
distance_metric (string): Metric for measuring similarity. Options: 'cosine',
|
||||
'euclidean', 'euclidean_l2'.
|
||||
|
||||
enforce_detection (bool): The function throws exception if a face could not be detected.
|
||||
Set this to False if you don't want to get exception. This might be convenient for low
|
||||
resolution images.
|
||||
enforce_detection (boolean): If no face is detected in an image, raise an exception.
|
||||
Default is True. Set to False to avoid the exception for low-resolution images.
|
||||
|
||||
detector_backend (string): set face detector backend to opencv, retinaface, mtcnn, ssd,
|
||||
dlib, mediapipe or yolov8.
|
||||
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8'.
|
||||
|
||||
align (boolean): alignment according to the eye positions.
|
||||
align (boolean): Perform alignment based on the eye positions.
|
||||
|
||||
normalization (string): normalize the input image before feeding to model
|
||||
normalization (string): Normalize the input image before feeding it to the model.
|
||||
Default is base. Options: base, raw, Facenet, Facenet2018, VGGFace, VGGFace2, ArcFace
|
||||
|
||||
silent (boolean): disable some logging and progress bars
|
||||
silent (boolean): Suppress or allow some log messages for a quieter analysis process.
|
||||
|
||||
Returns:
|
||||
This function returns list of pandas data frame. Each item of the list corresponding to
|
||||
an identity in the img_path.
|
||||
results (List[pd.DataFrame]): A list of pandas dataframes. Each dataframe corresponds
|
||||
to the identity information for an individual detected in the source image.
|
||||
The DataFrame columns include:
|
||||
|
||||
- 'identity': Identity label of the detected individual.
|
||||
- 'target_x', 'target_y', 'target_w', 'target_h': Bounding box coordinates of the
|
||||
target face in the database.
|
||||
- 'source_x', 'source_y', 'source_w', 'source_h': Bounding box coordinates of the
|
||||
detected face in the source image.
|
||||
- '{model_name}_{distance_metric}': Similarity score between the faces based on the
|
||||
specified model and distance metric
|
||||
"""
|
||||
return recognition.find(
|
||||
img_path=img_path,
|
||||
@ -261,47 +274,40 @@ def represent(
|
||||
normalization: str = "base",
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
This function represents facial images as vectors. The function uses convolutional neural
|
||||
networks models to generate vector embeddings.
|
||||
Represent facial images as multi-dimensional vector embeddings.
|
||||
|
||||
Parameters:
|
||||
img_path (string): exact image path. Alternatively, numpy array (BGR) or based64
|
||||
encoded images could be passed. Source image can have many faces. Then, result will
|
||||
be the size of number of faces appearing in the source image.
|
||||
Args:
|
||||
img_path (str or np.ndarray): The exact path to the image, a numpy array in BGR format,
|
||||
or a base64 encoded image. If the source image contains multiple faces, the result will
|
||||
include information for each detected face.
|
||||
|
||||
model_name (string): VGG-Face, Facenet, Facenet512, OpenFace, DeepFace, DeepID, Dlib,
|
||||
ArcFace, SFace
|
||||
model_name (str): Model for face recognition. Options: VGG-Face, Facenet, Facenet512,
|
||||
OpenFace, DeepFace, DeepID, Dlib, ArcFace and SFace
|
||||
|
||||
enforce_detection (boolean): If no face could not be detected in an image, then this
|
||||
function will return exception by default. Set this to False not to have this exception.
|
||||
This might be convenient for low resolution images.
|
||||
enforce_detection (boolean): If no face is detected in an image, raise an exception.
|
||||
Default is True. Set to False to avoid the exception for low-resolution images.
|
||||
|
||||
detector_backend (string): set face detector backend to opencv, retinaface, mtcnn, ssd,
|
||||
dlib, mediapipe or yolov8. A special value `skip` could be used to skip face-detection
|
||||
and only encode the given image.
|
||||
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8'.
|
||||
|
||||
align (boolean): alignment according to the eye positions.
|
||||
align (boolean): Perform alignment based on the eye positions.
|
||||
|
||||
normalization (string): normalize the input image before feeding to model
|
||||
normalization (string): Normalize the input image before feeding it to the model.
|
||||
Default is base. Options: base, raw, Facenet, Facenet2018, VGGFace, VGGFace2, ArcFace
|
||||
|
||||
Returns:
|
||||
Represent function returns a list of object, each object has fields as follows:
|
||||
{
|
||||
// Multidimensional vector
|
||||
// The number of dimensions is changing based on the reference model.
|
||||
// E.g. FaceNet returns 128 dimensional vector;
|
||||
// VGG-Face returns 2622 dimensional vector.
|
||||
"embedding": np.array,
|
||||
results (List[Dict[str, Any]]): A list of dictionaries, each containing the
|
||||
following fields:
|
||||
|
||||
// Detected Facial-Area by Face detection in dict format.
|
||||
// (x, y) is left-corner point, and (w, h) is the width and height
|
||||
// If `detector_backend` == `skip`, it is the full image area and nonsense.
|
||||
"facial_area": dict{"x": int, "y": int, "w": int, "h": int},
|
||||
|
||||
// Face detection confidence.
|
||||
// If `detector_backend` == `skip`, will be 0 and nonsense.
|
||||
"face_confidence": float
|
||||
}
|
||||
- embedding (np.array): Multidimensional vector representing facial features.
|
||||
The number of dimensions varies based on the reference model
|
||||
(e.g., FaceNet returns 128 dimensions, VGG-Face returns 4096 dimensions).
|
||||
- facial_area (dict): Detected facial area by face detection in dictionary format.
|
||||
Contains 'x' and 'y' as the left-corner point, and 'w' and 'h'
|
||||
as the width and height. If `detector_backend` is set to 'skip', it represents
|
||||
the full image area and is nonsensical.
|
||||
- face_confidence (float): Confidence score of face detection. If `detector_backend` is set
|
||||
to 'skip', the confidence will be 0 and is nonsensical.
|
||||
"""
|
||||
return representation.represent(
|
||||
img_path=img_path,
|
||||
@ -324,26 +330,31 @@ def stream(
|
||||
frame_threshold: int = 5,
|
||||
) -> None:
|
||||
"""
|
||||
This function applies real time face recognition and facial attribute analysis
|
||||
Run real time face recognition and facial attribute analysis
|
||||
|
||||
Parameters:
|
||||
db_path (string): facial database path. You should store some .jpg files in this folder.
|
||||
Args:
|
||||
db_path (string): Path to the folder containing image files. All detected faces
|
||||
in the database will be considered in the decision-making process.
|
||||
|
||||
model_name (string): VGG-Face, Facenet, Facenet512, OpenFace, DeepFace, DeepID, Dlib,
|
||||
ArcFace, SFace
|
||||
model_name (str): Model for face recognition. Options: VGG-Face, Facenet, Facenet512,
|
||||
OpenFace, DeepFace, DeepID, Dlib, ArcFace and SFace
|
||||
|
||||
detector_backend (string): opencv, retinaface, mtcnn, ssd, dlib, mediapipe or yolov8.
|
||||
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8'.
|
||||
|
||||
distance_metric (string): cosine, euclidean, euclidean_l2
|
||||
distance_metric (string): Metric for measuring similarity. Options: 'cosine',
|
||||
'euclidean', 'euclidean_l2'.
|
||||
|
||||
enable_facial_analysis (boolean): Set this to False to just run face recognition
|
||||
enable_face_analysis (bool): Flag to enable face analysis (default is True).
|
||||
|
||||
source: Set this to 0 for access web cam. Otherwise, pass exact video path.
|
||||
source (Any): The source for the video stream (default is 0, which represents the
|
||||
default camera).
|
||||
|
||||
time_threshold (int): how many second analyzed image will be displayed
|
||||
|
||||
frame_threshold (int): how many frames required to focus on face
|
||||
time_threshold (int): The time threshold (in seconds) for face recognition (default is 5).
|
||||
|
||||
frame_threshold (int): The frame threshold for face recognition (default is 5).
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
|
||||
time_threshold = max(time_threshold, 1)
|
||||
@ -370,32 +381,32 @@ def extract_faces(
|
||||
grayscale: bool = False,
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
This function applies pre-processing stages of a face recognition pipeline
|
||||
including detection and alignment
|
||||
Extract faces from a given image
|
||||
|
||||
Parameters:
|
||||
img_path: exact image path, numpy array (BGR) or base64 encoded image.
|
||||
Source image can have many face. Then, result will be the size of number
|
||||
of faces appearing in that source image.
|
||||
Args:
|
||||
img_path (str or np.ndarray): Path to the first image. Accepts exact image path
|
||||
as a string, numpy array (BGR), or base64 encoded images.
|
||||
|
||||
target_size (tuple): final shape of facial image. black pixels will be
|
||||
added to resize the image.
|
||||
|
||||
detector_backend (string): face detection backends are retinaface, mtcnn,
|
||||
opencv, ssd or dlib
|
||||
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8' (default is opencv)
|
||||
|
||||
enforce_detection (boolean): function throws exception if face cannot be
|
||||
detected in the fed image. Set this to False if you do not want to get
|
||||
an exception and run the function anyway.
|
||||
enforce_detection (boolean): If no face is detected in an image, raise an exception.
|
||||
Default is True. Set to False to avoid the exception for low-resolution images.
|
||||
|
||||
align (boolean): alignment according to the eye positions.
|
||||
align (bool): Flag to enable face alignment (default is True).
|
||||
|
||||
grayscale (boolean): Flag to convert the image to grayscale before
|
||||
processing (default is False).
|
||||
|
||||
grayscale (boolean): extracting faces in rgb or gray scale
|
||||
|
||||
Returns:
|
||||
list of dictionaries. Each dictionary will have facial image itself,
|
||||
extracted area from the original image and confidence score.
|
||||
|
||||
results (List[Dict[str, Any]]): A list of dictionaries, where each dictionary contains:
|
||||
- "face" (np.ndarray): The detected face as a NumPy array.
|
||||
- "facial_area" (List[float]): The detected face's regions represented as a list of floats.
|
||||
- "confidence" (float): The confidence score associated with the detected face.
|
||||
"""
|
||||
|
||||
return detection.extract_faces(
|
||||
|
@ -20,31 +20,32 @@ def analyze(
|
||||
silent: bool = False,
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
This function analyzes facial attributes including age, gender, emotion and race.
|
||||
In the background, analysis function builds convolutional neural network models to
|
||||
classify age, gender, emotion and race of the input image.
|
||||
Analyze facial attributes such as age, gender, emotion, and race in the provided image.
|
||||
|
||||
Parameters:
|
||||
img_path: exact image path, numpy array (BGR) or base64 encoded image could be passed.
|
||||
If source image has more than one face, then result will be size of number of faces
|
||||
appearing in the image.
|
||||
Args:
|
||||
img_path (str or np.ndarray): The exact path to the image, a numpy array in BGR format,
|
||||
or a base64 encoded image. If the source image contains multiple faces, the result will
|
||||
include information for each detected face.
|
||||
|
||||
actions (tuple): The default is ('age', 'gender', 'emotion', 'race'). You can drop
|
||||
some of those attributes.
|
||||
actions (tuple): Attributes to analyze. The default is ('age', 'gender', 'emotion', 'race').
|
||||
You can exclude some of these attributes from the analysis if needed.
|
||||
|
||||
enforce_detection (bool): The function throws exception if no face detected by default.
|
||||
Set this to False if you don't want to get exception. This might be convenient for low
|
||||
resolution images.
|
||||
enforce_detection (boolean): If no face is detected in an image, raise an exception.
|
||||
Default is True. Set to False to avoid the exception for low-resolution images.
|
||||
|
||||
detector_backend (string): set face detector backend to opencv, retinaface, mtcnn, ssd,
|
||||
dlib, mediapipe or yolov8.
|
||||
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8'.
|
||||
|
||||
align (boolean): alignment according to the eye positions.
|
||||
distance_metric (string): Metric for measuring similarity. Options: 'cosine',
|
||||
'euclidean', 'euclidean_l2'.
|
||||
|
||||
silent (boolean): disable (some) log messages
|
||||
align (boolean): Perform alignment based on the eye positions.
|
||||
|
||||
silent (boolean): Suppress or allow some log messages for a quieter analysis process.
|
||||
|
||||
Returns:
|
||||
The function returns a list of dictionaries for each face appearing in the image.
|
||||
results (List[Dict[str, Any]]): A list of dictionaries, where each dictionary represents
|
||||
the analysis results for a detected face. Example:
|
||||
|
||||
[
|
||||
{
|
||||
|
@ -18,35 +18,32 @@ def extract_faces(
|
||||
grayscale: bool = False,
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
This function applies pre-processing stages of a face recognition pipeline
|
||||
including detection and alignment
|
||||
Extract faces from a given image
|
||||
|
||||
Parameters:
|
||||
img_path: exact image path, numpy array (BGR) or base64 encoded image.
|
||||
Source image can have many face. Then, result will be the size of number
|
||||
of faces appearing in that source image.
|
||||
Args:
|
||||
img_path (str or np.ndarray): Path to the first image. Accepts exact image path
|
||||
as a string, numpy array (BGR), or base64 encoded images.
|
||||
|
||||
target_size (tuple): final shape of facial image. black pixels will be
|
||||
added to resize the image.
|
||||
|
||||
detector_backend (string): face detection backends are retinaface, mtcnn,
|
||||
opencv, ssd or dlib
|
||||
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8' (default is opencv)
|
||||
|
||||
enforce_detection (boolean): function throws exception if face cannot be
|
||||
detected in the fed image. Set this to False if you do not want to get
|
||||
an exception and run the function anyway.
|
||||
enforce_detection (boolean): If no face is detected in an image, raise an exception.
|
||||
Default is True. Set to False to avoid the exception for low-resolution images.
|
||||
|
||||
align (boolean): alignment according to the eye positions.
|
||||
align (bool): Flag to enable face alignment (default is True).
|
||||
|
||||
grayscale (boolean): Flag to convert the image to grayscale before
|
||||
processing (default is False).
|
||||
|
||||
grayscale (boolean): extracting faces in rgb or gray scale
|
||||
|
||||
Returns:
|
||||
results (List[Dict[str, Any]]): A list of dictionaries, where each dictionary contains:
|
||||
- "face" (np.ndarray): The detected face as a NumPy array.
|
||||
- "facial_area" (List[float]): The detected face's regions represented as a list of floats.
|
||||
- "confidence" (float): The confidence score associated with the detected face.
|
||||
|
||||
|
||||
"""
|
||||
|
||||
resp_objs = []
|
||||
|
@ -29,38 +29,47 @@ def find(
|
||||
silent: bool = False,
|
||||
) -> List[pd.DataFrame]:
|
||||
"""
|
||||
This function applies verification several times and find the identities in a database
|
||||
Identify individuals in a database
|
||||
|
||||
Parameters:
|
||||
img_path: exact image path, numpy array (BGR) or based64 encoded image.
|
||||
Source image can have many faces. Then, result will be the size of number of
|
||||
faces in the source image.
|
||||
Args:
|
||||
img_path (str or np.ndarray): The exact path to the image, a numpy array in BGR format,
|
||||
or a base64 encoded image. If the source image contains multiple faces, the result will
|
||||
include information for each detected face.
|
||||
|
||||
db_path (string): You should store some image files in a folder and pass the
|
||||
exact folder path to this. A database image can also have many faces.
|
||||
Then, all detected faces in db side will be considered in the decision.
|
||||
db_path (string): Path to the folder containing image files. All detected faces
|
||||
in the database will be considered in the decision-making process.
|
||||
|
||||
model_name (string): VGG-Face, Facenet, Facenet512, OpenFace, DeepFace, DeepID,
|
||||
Dlib, ArcFace, SFace or Ensemble
|
||||
model_name (str): Model for face recognition. Options: VGG-Face, Facenet, Facenet512,
|
||||
OpenFace, DeepFace, DeepID, Dlib, ArcFace and SFace
|
||||
|
||||
distance_metric (string): cosine, euclidean, euclidean_l2
|
||||
distance_metric (string): Metric for measuring similarity. Options: 'cosine',
|
||||
'euclidean', 'euclidean_l2'.
|
||||
|
||||
enforce_detection (bool): The function throws exception if a face could not be detected.
|
||||
Set this to False if you don't want to get exception. This might be convenient for low
|
||||
resolution images.
|
||||
enforce_detection (boolean): If no face is detected in an image, raise an exception.
|
||||
Default is True. Set to False to avoid the exception for low-resolution images.
|
||||
|
||||
detector_backend (string): set face detector backend to opencv, retinaface, mtcnn, ssd,
|
||||
dlib, mediapipe or yolov8.
|
||||
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8'.
|
||||
|
||||
align (boolean): alignment according to the eye positions.
|
||||
align (boolean): Perform alignment based on the eye positions.
|
||||
|
||||
normalization (string): normalize the input image before feeding to model
|
||||
normalization (string): Normalize the input image before feeding it to the model.
|
||||
Default is base. Options: base, raw, Facenet, Facenet2018, VGGFace, VGGFace2, ArcFace
|
||||
|
||||
silent (boolean): disable some logging and progress bars
|
||||
silent (boolean): Suppress or allow some log messages for a quieter analysis process.
|
||||
|
||||
Returns:
|
||||
This function returns list of pandas data frame. Each item of the list corresponding to
|
||||
an identity in the img_path.
|
||||
results (List[pd.DataFrame]): A list of pandas dataframes. Each dataframe corresponds
|
||||
to the identity information for an individual detected in the source image.
|
||||
The DataFrame columns include:
|
||||
|
||||
- 'identity': Identity label of the detected individual.
|
||||
- 'target_x', 'target_y', 'target_w', 'target_h': Bounding box coordinates of the
|
||||
target face in the database.
|
||||
- 'source_x', 'source_y', 'source_w', 'source_h': Bounding box coordinates of the
|
||||
detected face in the source image.
|
||||
- '{model_name}_{distance_metric}': Similarity score between the faces based on the
|
||||
specified model and distance metric
|
||||
"""
|
||||
|
||||
tic = time.time()
|
||||
|
@ -20,47 +20,40 @@ def represent(
|
||||
normalization: str = "base",
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
This function represents facial images as vectors. The function uses convolutional neural
|
||||
networks models to generate vector embeddings.
|
||||
Represent facial images as multi-dimensional vector embeddings.
|
||||
|
||||
Parameters:
|
||||
img_path (string): exact image path. Alternatively, numpy array (BGR) or based64
|
||||
encoded images could be passed. Source image can have many faces. Then, result will
|
||||
be the size of number of faces appearing in the source image.
|
||||
Args:
|
||||
img_path (str or np.ndarray): The exact path to the image, a numpy array in BGR format,
|
||||
or a base64 encoded image. If the source image contains multiple faces, the result will
|
||||
include information for each detected face.
|
||||
|
||||
model_name (string): VGG-Face, Facenet, Facenet512, OpenFace, DeepFace, DeepID, Dlib,
|
||||
ArcFace, SFace
|
||||
model_name (str): Model for face recognition. Options: VGG-Face, Facenet, Facenet512,
|
||||
OpenFace, DeepFace, DeepID, Dlib, ArcFace and SFace
|
||||
|
||||
enforce_detection (boolean): If no face could not be detected in an image, then this
|
||||
function will return exception by default. Set this to False not to have this exception.
|
||||
This might be convenient for low resolution images.
|
||||
enforce_detection (boolean): If no face is detected in an image, raise an exception.
|
||||
Default is True. Set to False to avoid the exception for low-resolution images.
|
||||
|
||||
detector_backend (string): set face detector backend to opencv, retinaface, mtcnn, ssd,
|
||||
dlib, mediapipe or yolov8. A special value `skip` could be used to skip face-detection
|
||||
and only encode the given image.
|
||||
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8'.
|
||||
|
||||
align (boolean): alignment according to the eye positions.
|
||||
align (boolean): Perform alignment based on the eye positions.
|
||||
|
||||
normalization (string): normalize the input image before feeding to model
|
||||
normalization (string): Normalize the input image before feeding it to the model.
|
||||
Default is base. Options: base, raw, Facenet, Facenet2018, VGGFace, VGGFace2, ArcFace
|
||||
|
||||
Returns:
|
||||
Represent function returns a list of object, each object has fields as follows:
|
||||
{
|
||||
// Multidimensional vector
|
||||
// The number of dimensions is changing based on the reference model.
|
||||
// E.g. FaceNet returns 128 dimensional vector;
|
||||
// VGG-Face returns 2622 dimensional vector.
|
||||
"embedding": np.array,
|
||||
results (List[Dict[str, Any]]): A list of dictionaries, each containing the
|
||||
following fields:
|
||||
|
||||
// Detected Facial-Area by Face detection in dict format.
|
||||
// (x, y) is left-corner point, and (w, h) is the width and height
|
||||
// If `detector_backend` == `skip`, it is the full image area and nonsense.
|
||||
"facial_area": dict{"x": int, "y": int, "w": int, "h": int},
|
||||
|
||||
// Face detection confidence.
|
||||
// If `detector_backend` == `skip`, will be 0 and nonsense.
|
||||
"face_confidence": float
|
||||
}
|
||||
- embedding (np.array): Multidimensional vector representing facial features.
|
||||
The number of dimensions varies based on the reference model
|
||||
(e.g., FaceNet returns 128 dimensions, VGG-Face returns 4096 dimensions).
|
||||
- facial_area (dict): Detected facial area by face detection in dictionary format.
|
||||
Contains 'x' and 'y' as the left-corner point, and 'w' and 'h'
|
||||
as the width and height. If `detector_backend` is set to 'skip', it represents
|
||||
the full image area and is nonsensical.
|
||||
- face_confidence (float): Confidence score of face detection. If `detector_backend` is set
|
||||
to 'skip', the confidence will be 0 and is nonsensical.
|
||||
"""
|
||||
resp_objs = []
|
||||
|
||||
|
@ -21,34 +21,38 @@ def verify(
|
||||
normalization: str = "base",
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
This function verifies an image pair is same person or different persons. In the background,
|
||||
verification function represents facial images as vectors and then calculates the similarity
|
||||
between those vectors. Vectors of same person images should have more similarity (or less
|
||||
distance) than vectors of different persons.
|
||||
Verify if an image pair represents the same person or different persons.
|
||||
|
||||
Parameters:
|
||||
img1_path, img2_path: exact image path as string. numpy array (BGR) or based64 encoded
|
||||
images are also welcome. If one of pair has more than one face, then we will compare the
|
||||
face pair with max similarity.
|
||||
The verification function converts facial images to vectors and calculates the similarity
|
||||
between those vectors. Vectors of images of the same person should exhibit higher similarity
|
||||
(or lower distance) than vectors of images of different persons.
|
||||
|
||||
model_name (str): VGG-Face, Facenet, Facenet512, OpenFace, DeepFace, DeepID, Dlib
|
||||
, ArcFace and SFace
|
||||
Args:
|
||||
img1_path (str or np.ndarray): Path to the first image. Accepts exact image path
|
||||
as a string, numpy array (BGR), or base64 encoded images.
|
||||
|
||||
distance_metric (string): cosine, euclidean, euclidean_l2
|
||||
img2_path (str or np.ndarray): Path to the second image. Accepts exact image path
|
||||
as a string, numpy array (BGR), or base64 encoded images.
|
||||
|
||||
enforce_detection (boolean): If no face could not be detected in an image, then this
|
||||
function will return exception by default. Set this to False not to have this exception.
|
||||
This might be convenient for low resolution images.
|
||||
model_name (str): Model for face recognition. Options: VGG-Face, Facenet, Facenet512,
|
||||
OpenFace, DeepFace, DeepID, Dlib, ArcFace and SFace
|
||||
|
||||
detector_backend (string): set face detector backend to opencv, retinaface, mtcnn, ssd,
|
||||
dlib, mediapipe or yolov8.
|
||||
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8'.
|
||||
|
||||
align (boolean): alignment according to the eye positions.
|
||||
distance_metric (string): Metric for measuring similarity. Options: 'cosine',
|
||||
'euclidean', 'euclidean_l2'.
|
||||
|
||||
normalization (string): normalize the input image before feeding to model
|
||||
enforce_detection (boolean): If no face is detected in an image, raise an exception.
|
||||
Default is True. Set to False to avoid the exception for low-resolution images.
|
||||
|
||||
align (bool): Flag to enable face alignment (default is True).
|
||||
|
||||
normalization (string): Normalize the input image before feeding it to the model.
|
||||
Default is base. Options: base, raw, Facenet, Facenet2018, VGGFace, VGGFace2, ArcFace
|
||||
|
||||
Returns:
|
||||
Verify function returns a dictionary.
|
||||
result (dict): A dictionary containing verification results.
|
||||
|
||||
{
|
||||
"verified": True
|
||||
@ -62,7 +66,6 @@ def verify(
|
||||
}
|
||||
, "time": 2
|
||||
}
|
||||
|
||||
"""
|
||||
|
||||
tic = time.time()
|
||||
|
Loading…
x
Reference in New Issue
Block a user