mirror of
https://github.com/serengil/deepface.git
synced 2025-06-06 11:35:21 +00:00
Merge pull request #1319 from Circuit8/represent-optimizations
Represent optimizations
This commit is contained in:
commit
ed1b117016
3
.gitignore
vendored
3
.gitignore
vendored
@ -16,4 +16,5 @@ tests/*.csv
|
||||
benchmarks/results
|
||||
benchmarks/outputs
|
||||
benchmarks/dataset
|
||||
benchmarks/lfwe
|
||||
benchmarks/lfwe
|
||||
venv
|
@ -1,15 +1,16 @@
|
||||
# built-in dependencies
|
||||
from typing import Any, Dict, List, Tuple, Union
|
||||
from typing import Any, Dict, List, Tuple, Union, Optional
|
||||
|
||||
# 3rd part dependencies
|
||||
from heapq import nlargest
|
||||
import numpy as np
|
||||
import cv2
|
||||
from PIL import Image
|
||||
|
||||
# project dependencies
|
||||
from deepface.modules import modeling
|
||||
from deepface.models.Detector import Detector, DetectedFace, FacialAreaRegion
|
||||
from deepface.commons import image_utils
|
||||
|
||||
from deepface.commons.logger import Logger
|
||||
|
||||
logger = Logger()
|
||||
@ -27,6 +28,7 @@ def extract_faces(
|
||||
color_face: str = "rgb",
|
||||
normalize_face: bool = True,
|
||||
anti_spoofing: bool = False,
|
||||
max_faces: Optional[int] = None,
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Extract faces from a given image
|
||||
@ -97,6 +99,7 @@ def extract_faces(
|
||||
img=img,
|
||||
align=align,
|
||||
expand_percentage=expand_percentage,
|
||||
max_faces=max_faces,
|
||||
)
|
||||
|
||||
# in case of no face found
|
||||
@ -176,7 +179,9 @@ def extract_faces(
|
||||
|
||||
|
||||
def detect_faces(
|
||||
detector_backend: str, img: np.ndarray, align: bool = True, expand_percentage: int = 0
|
||||
detector_backend: str, img: np.ndarray,
|
||||
align: bool = True, expand_percentage: int = 0,
|
||||
max_faces: Optional[int] = None
|
||||
) -> List[DetectedFace]:
|
||||
"""
|
||||
Detect face(s) from a given image
|
||||
@ -202,7 +207,6 @@ def detect_faces(
|
||||
- confidence (float): The confidence score associated with the detected face.
|
||||
"""
|
||||
height, width, _ = img.shape
|
||||
|
||||
face_detector: Detector = modeling.build_model(
|
||||
task="face_detector", model_name=detector_backend
|
||||
)
|
||||
@ -233,60 +237,77 @@ def detect_faces(
|
||||
# find facial areas of given image
|
||||
facial_areas = face_detector.detect_faces(img)
|
||||
|
||||
results = []
|
||||
for facial_area in facial_areas:
|
||||
x = facial_area.x
|
||||
y = facial_area.y
|
||||
w = facial_area.w
|
||||
h = facial_area.h
|
||||
left_eye = facial_area.left_eye
|
||||
right_eye = facial_area.right_eye
|
||||
confidence = facial_area.confidence
|
||||
|
||||
if expand_percentage > 0:
|
||||
# Expand the facial region height and width by the provided percentage
|
||||
# ensuring that the expanded region stays within img.shape limits
|
||||
expanded_w = w + int(w * expand_percentage / 100)
|
||||
expanded_h = h + int(h * expand_percentage / 100)
|
||||
|
||||
x = max(0, x - int((expanded_w - w) / 2))
|
||||
y = max(0, y - int((expanded_h - h) / 2))
|
||||
w = min(img.shape[1] - x, expanded_w)
|
||||
h = min(img.shape[0] - y, expanded_h)
|
||||
|
||||
# extract detected face unaligned
|
||||
detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
|
||||
|
||||
# align original image, then find projection of detected face area after alignment
|
||||
if align is True: # and left_eye is not None and right_eye is not None:
|
||||
aligned_img, angle = align_img_wrt_eyes(img=img, left_eye=left_eye, right_eye=right_eye)
|
||||
|
||||
rotated_x1, rotated_y1, rotated_x2, rotated_y2 = project_facial_area(
|
||||
facial_area=(x, y, x + w, y + h), angle=angle, size=(img.shape[0], img.shape[1])
|
||||
)
|
||||
detected_face = aligned_img[
|
||||
int(rotated_y1) : int(rotated_y2), int(rotated_x1) : int(rotated_x2)
|
||||
]
|
||||
|
||||
# restore x, y, le and re before border added
|
||||
x = x - width_border
|
||||
y = y - height_border
|
||||
# w and h will not change
|
||||
if left_eye is not None:
|
||||
left_eye = (left_eye[0] - width_border, left_eye[1] - height_border)
|
||||
if right_eye is not None:
|
||||
right_eye = (right_eye[0] - width_border, right_eye[1] - height_border)
|
||||
|
||||
result = DetectedFace(
|
||||
img=detected_face,
|
||||
facial_area=FacialAreaRegion(
|
||||
x=x, y=y, h=h, w=w, confidence=confidence, left_eye=left_eye, right_eye=right_eye
|
||||
),
|
||||
confidence=confidence,
|
||||
if max_faces is not None and max_faces < len(facial_areas):
|
||||
facial_areas = nlargest(
|
||||
max_faces,
|
||||
facial_areas,
|
||||
key=lambda facial_area: facial_area.w * facial_area.h
|
||||
)
|
||||
results.append(result)
|
||||
return results
|
||||
|
||||
return [
|
||||
expand_and_align_face(
|
||||
facial_area=facial_area,
|
||||
img=img,
|
||||
align=align,
|
||||
expand_percentage=expand_percentage,
|
||||
width_border=width_border,
|
||||
height_border=height_border
|
||||
)
|
||||
for facial_area in facial_areas
|
||||
]
|
||||
|
||||
def expand_and_align_face(
|
||||
facial_area: FacialAreaRegion, img: np.ndarray,
|
||||
align: bool, expand_percentage: int, width_border: int,
|
||||
height_border: int) -> DetectedFace:
|
||||
x = facial_area.x
|
||||
y = facial_area.y
|
||||
w = facial_area.w
|
||||
h = facial_area.h
|
||||
left_eye = facial_area.left_eye
|
||||
right_eye = facial_area.right_eye
|
||||
confidence = facial_area.confidence
|
||||
|
||||
if expand_percentage > 0:
|
||||
# Expand the facial region height and width by the provided percentage
|
||||
# ensuring that the expanded region stays within img.shape limits
|
||||
expanded_w = w + int(w * expand_percentage / 100)
|
||||
expanded_h = h + int(h * expand_percentage / 100)
|
||||
|
||||
x = max(0, x - int((expanded_w - w) / 2))
|
||||
y = max(0, y - int((expanded_h - h) / 2))
|
||||
w = min(img.shape[1] - x, expanded_w)
|
||||
h = min(img.shape[0] - y, expanded_h)
|
||||
|
||||
# extract detected face unaligned
|
||||
detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
|
||||
# align original image, then find projection of detected face area after alignment
|
||||
if align is True: # and left_eye is not None and right_eye is not None:
|
||||
aligned_img, angle = align_img_wrt_eyes(img=img, left_eye=left_eye, right_eye=right_eye)
|
||||
|
||||
rotated_x1, rotated_y1, rotated_x2, rotated_y2 = project_facial_area(
|
||||
facial_area=(x, y, x + w, y + h), angle=angle, size=(img.shape[0], img.shape[1])
|
||||
)
|
||||
detected_face = aligned_img[
|
||||
int(rotated_y1) : int(rotated_y2), int(rotated_x1) : int(rotated_x2)
|
||||
]
|
||||
|
||||
# restore x, y, le and re before border added
|
||||
x = x - width_border
|
||||
y = y - height_border
|
||||
# w and h will not change
|
||||
if left_eye is not None:
|
||||
left_eye = (left_eye[0] - width_border, left_eye[1] - height_border)
|
||||
if right_eye is not None:
|
||||
right_eye = (right_eye[0] - width_border, right_eye[1] - height_border)
|
||||
|
||||
return DetectedFace(
|
||||
img=detected_face,
|
||||
facial_area=FacialAreaRegion(
|
||||
x=x, y=y, h=h, w=w, confidence=confidence, left_eye=left_eye, right_eye=right_eye
|
||||
),
|
||||
confidence=confidence,
|
||||
)
|
||||
|
||||
def align_img_wrt_eyes(
|
||||
img: np.ndarray,
|
||||
@ -311,7 +332,16 @@ def align_img_wrt_eyes(
|
||||
return img, 0
|
||||
|
||||
angle = float(np.degrees(np.arctan2(left_eye[1] - right_eye[1], left_eye[0] - right_eye[0])))
|
||||
img = np.array(Image.fromarray(img).rotate(angle, resample=Image.BICUBIC))
|
||||
|
||||
(h, w) = img.shape[:2]
|
||||
center = (w // 2, h // 2)
|
||||
M = cv2.getRotationMatrix2D(center, angle, 1.0)
|
||||
img = cv2.warpAffine(
|
||||
img, M, (w, h),
|
||||
flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_CONSTANT,
|
||||
borderValue=(0,0,0)
|
||||
)
|
||||
|
||||
return img, angle
|
||||
|
||||
|
||||
|
@ -81,6 +81,7 @@ def represent(
|
||||
align=align,
|
||||
expand_percentage=expand_percentage,
|
||||
anti_spoofing=anti_spoofing,
|
||||
max_faces=max_faces,
|
||||
)
|
||||
else: # skip
|
||||
# Try load. If load error, will raise exception internal
|
||||
|
Loading…
x
Reference in New Issue
Block a user