Merge pull request #1319 from Circuit8/represent-optimizations

Represent optimizations
This commit is contained in:
Sefik Ilkin Serengil 2024-08-26 14:50:16 +01:00 committed by GitHub
commit ed1b117016
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 90 additions and 58 deletions

1
.gitignore vendored
View File

@ -17,3 +17,4 @@ benchmarks/results
benchmarks/outputs
benchmarks/dataset
benchmarks/lfwe
venv

View File

@ -1,15 +1,16 @@
# built-in dependencies
from typing import Any, Dict, List, Tuple, Union
from typing import Any, Dict, List, Tuple, Union, Optional
# 3rd part dependencies
from heapq import nlargest
import numpy as np
import cv2
from PIL import Image
# project dependencies
from deepface.modules import modeling
from deepface.models.Detector import Detector, DetectedFace, FacialAreaRegion
from deepface.commons import image_utils
from deepface.commons.logger import Logger
logger = Logger()
@ -27,6 +28,7 @@ def extract_faces(
color_face: str = "rgb",
normalize_face: bool = True,
anti_spoofing: bool = False,
max_faces: Optional[int] = None,
) -> List[Dict[str, Any]]:
"""
Extract faces from a given image
@ -97,6 +99,7 @@ def extract_faces(
img=img,
align=align,
expand_percentage=expand_percentage,
max_faces=max_faces,
)
# in case of no face found
@ -176,7 +179,9 @@ def extract_faces(
def detect_faces(
detector_backend: str, img: np.ndarray, align: bool = True, expand_percentage: int = 0
detector_backend: str, img: np.ndarray,
align: bool = True, expand_percentage: int = 0,
max_faces: Optional[int] = None
) -> List[DetectedFace]:
"""
Detect face(s) from a given image
@ -202,7 +207,6 @@ def detect_faces(
- confidence (float): The confidence score associated with the detected face.
"""
height, width, _ = img.shape
face_detector: Detector = modeling.build_model(
task="face_detector", model_name=detector_backend
)
@ -233,8 +237,29 @@ def detect_faces(
# find facial areas of given image
facial_areas = face_detector.detect_faces(img)
results = []
for facial_area in facial_areas:
if max_faces is not None and max_faces < len(facial_areas):
facial_areas = nlargest(
max_faces,
facial_areas,
key=lambda facial_area: facial_area.w * facial_area.h
)
return [
expand_and_align_face(
facial_area=facial_area,
img=img,
align=align,
expand_percentage=expand_percentage,
width_border=width_border,
height_border=height_border
)
for facial_area in facial_areas
]
def expand_and_align_face(
facial_area: FacialAreaRegion, img: np.ndarray,
align: bool, expand_percentage: int, width_border: int,
height_border: int) -> DetectedFace:
x = facial_area.x
y = facial_area.y
w = facial_area.w
@ -256,7 +281,6 @@ def detect_faces(
# extract detected face unaligned
detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
# align original image, then find projection of detected face area after alignment
if align is True: # and left_eye is not None and right_eye is not None:
aligned_img, angle = align_img_wrt_eyes(img=img, left_eye=left_eye, right_eye=right_eye)
@ -277,16 +301,13 @@ def detect_faces(
if right_eye is not None:
right_eye = (right_eye[0] - width_border, right_eye[1] - height_border)
result = DetectedFace(
return DetectedFace(
img=detected_face,
facial_area=FacialAreaRegion(
x=x, y=y, h=h, w=w, confidence=confidence, left_eye=left_eye, right_eye=right_eye
),
confidence=confidence,
)
results.append(result)
return results
def align_img_wrt_eyes(
img: np.ndarray,
@ -311,7 +332,16 @@ def align_img_wrt_eyes(
return img, 0
angle = float(np.degrees(np.arctan2(left_eye[1] - right_eye[1], left_eye[0] - right_eye[0])))
img = np.array(Image.fromarray(img).rotate(angle, resample=Image.BICUBIC))
(h, w) = img.shape[:2]
center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, angle, 1.0)
img = cv2.warpAffine(
img, M, (w, h),
flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_CONSTANT,
borderValue=(0,0,0)
)
return img, angle

View File

@ -81,6 +81,7 @@ def represent(
align=align,
expand_percentage=expand_percentage,
anti_spoofing=anti_spoofing,
max_faces=max_faces,
)
else: # skip
# Try load. If load error, will raise exception internal