mirror of
https://github.com/serengil/deepface.git
synced 2025-06-07 20:15:21 +00:00
dlib input shape retrieved from class similar to others
This commit is contained in:
parent
cdea61c043
commit
edae2a799c
@ -219,10 +219,6 @@ def verify(img1_path, img2_path = '', model_name = 'VGG-Face', distance_metric =
|
|||||||
#face recognition models have different size of inputs
|
#face recognition models have different size of inputs
|
||||||
#my environment returns (None, 224, 224, 3) but some people mentioned that they got [(None, 224, 224, 3)]. I think this is because of version issue.
|
#my environment returns (None, 224, 224, 3) but some people mentioned that they got [(None, 224, 224, 3)]. I think this is because of version issue.
|
||||||
|
|
||||||
if model_name == 'Dlib': #this is not a regular keras model
|
|
||||||
input_shape = (150, 150, 3)
|
|
||||||
|
|
||||||
else: #keras based models
|
|
||||||
input_shape = model.layers[0].input_shape
|
input_shape = model.layers[0].input_shape
|
||||||
|
|
||||||
if type(input_shape) == list:
|
if type(input_shape) == list:
|
||||||
@ -230,8 +226,7 @@ def verify(img1_path, img2_path = '', model_name = 'VGG-Face', distance_metric =
|
|||||||
else:
|
else:
|
||||||
input_shape = input_shape[1:3]
|
input_shape = input_shape[1:3]
|
||||||
|
|
||||||
input_shape_x = input_shape[0]
|
input_shape_x = input_shape[0]; input_shape_y = input_shape[1]
|
||||||
input_shape_y = input_shape[1]
|
|
||||||
|
|
||||||
#------------------------------
|
#------------------------------
|
||||||
|
|
||||||
@ -591,9 +586,6 @@ def find(img_path, db_path, model_name ='VGG-Face', distance_metric = 'cosine',
|
|||||||
|
|
||||||
if model_name != 'Ensemble':
|
if model_name != 'Ensemble':
|
||||||
|
|
||||||
if model_name == 'Dlib': #non-keras model
|
|
||||||
input_shape = (150, 150, 3)
|
|
||||||
else:
|
|
||||||
#input_shape = model.layers[0].input_shape[1:3] #my environment returns (None, 224, 224, 3) but some people mentioned that they got [(None, 224, 224, 3)]. I think this is because of version issue.
|
#input_shape = model.layers[0].input_shape[1:3] #my environment returns (None, 224, 224, 3) but some people mentioned that they got [(None, 224, 224, 3)]. I think this is because of version issue.
|
||||||
|
|
||||||
input_shape = model.layers[0].input_shape
|
input_shape = model.layers[0].input_shape
|
||||||
@ -603,8 +595,6 @@ def find(img_path, db_path, model_name ='VGG-Face', distance_metric = 'cosine',
|
|||||||
else:
|
else:
|
||||||
input_shape = input_shape[1:3]
|
input_shape = input_shape[1:3]
|
||||||
|
|
||||||
#---------------------
|
|
||||||
|
|
||||||
input_shape_x = input_shape[0]; input_shape_y = input_shape[1]
|
input_shape_x = input_shape[0]; input_shape_y = input_shape[1]
|
||||||
|
|
||||||
img = functions.preprocess_face(img = employee, target_size = (input_shape_y, input_shape_x), enforce_detection = enforce_detection, detector_backend = detector_backend)
|
img = functions.preprocess_face(img = employee, target_size = (input_shape_y, input_shape_x), enforce_detection = enforce_detection, detector_backend = detector_backend)
|
||||||
@ -754,9 +744,6 @@ def find(img_path, db_path, model_name ='VGG-Face', distance_metric = 'cosine',
|
|||||||
|
|
||||||
if model_name != 'Ensemble':
|
if model_name != 'Ensemble':
|
||||||
|
|
||||||
if model_name == 'Dlib': #non-keras model
|
|
||||||
input_shape = (150, 150, 3)
|
|
||||||
else:
|
|
||||||
#input_shape = model.layers[0].input_shape[1:3] #my environment returns (None, 224, 224, 3) but some people mentioned that they got [(None, 224, 224, 3)]. I think this is because of version issue.
|
#input_shape = model.layers[0].input_shape[1:3] #my environment returns (None, 224, 224, 3) but some people mentioned that they got [(None, 224, 224, 3)]. I think this is because of version issue.
|
||||||
|
|
||||||
input_shape = model.layers[0].input_shape
|
input_shape = model.layers[0].input_shape
|
||||||
@ -766,10 +753,10 @@ def find(img_path, db_path, model_name ='VGG-Face', distance_metric = 'cosine',
|
|||||||
else:
|
else:
|
||||||
input_shape = input_shape[1:3]
|
input_shape = input_shape[1:3]
|
||||||
|
|
||||||
#------------------------
|
|
||||||
|
|
||||||
input_shape_x = input_shape[0]; input_shape_y = input_shape[1]
|
input_shape_x = input_shape[0]; input_shape_y = input_shape[1]
|
||||||
|
|
||||||
|
#------------------------
|
||||||
|
|
||||||
img = functions.preprocess_face(img = img_path, target_size = (input_shape_y, input_shape_x), enforce_detection = enforce_detection, detector_backend = detector_backend)
|
img = functions.preprocess_face(img = img_path, target_size = (input_shape_y, input_shape_x), enforce_detection = enforce_detection, detector_backend = detector_backend)
|
||||||
target_representation = model.predict(img)[0,:]
|
target_representation = model.predict(img)[0,:]
|
||||||
|
|
||||||
|
@ -10,6 +10,10 @@ class DlibResNet:
|
|||||||
|
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
|
|
||||||
|
self.layers = [DlibMetaData()]
|
||||||
|
|
||||||
|
#---------------------
|
||||||
|
|
||||||
home = str(Path.home())
|
home = str(Path.home())
|
||||||
weight_file = home+'/.deepface/weights/dlib_face_recognition_resnet_model_v1.dat'
|
weight_file = home+'/.deepface/weights/dlib_face_recognition_resnet_model_v1.dat'
|
||||||
|
|
||||||
@ -60,3 +64,7 @@ class DlibResNet:
|
|||||||
img_representation = np.expand_dims(img_representation, axis = 0)
|
img_representation = np.expand_dims(img_representation, axis = 0)
|
||||||
|
|
||||||
return img_representation
|
return img_representation
|
||||||
|
|
||||||
|
class DlibMetaData:
|
||||||
|
def __init__(self):
|
||||||
|
self.input_shape = [[1, 150, 150, 3]]
|
Loading…
x
Reference in New Issue
Block a user