mirror of
https://github.com/serengil/deepface.git
synced 2025-06-07 12:05:22 +00:00
[update] remove dummy functions
This commit is contained in:
parent
ffbba7fe83
commit
edcef02511
@ -75,32 +75,6 @@ class ApparentAgeClient(Demography):
|
|||||||
|
|
||||||
return apparent_ages
|
return apparent_ages
|
||||||
|
|
||||||
|
|
||||||
def predicts(self, imgs: List[np.ndarray]) -> np.ndarray:
|
|
||||||
"""
|
|
||||||
Predict apparent ages of multiple faces
|
|
||||||
Args:
|
|
||||||
imgs (List[np.ndarray]): (n, 224, 224, 3)
|
|
||||||
Returns:
|
|
||||||
apparent_ages (np.ndarray): (n,)
|
|
||||||
"""
|
|
||||||
# Convert list to numpy array
|
|
||||||
imgs_:np.ndarray = np.array(imgs)
|
|
||||||
# Remove batch dimension if exists
|
|
||||||
imgs_ = imgs_.squeeze()
|
|
||||||
# Check if the input is a single image
|
|
||||||
if len(imgs_.shape) == 3:
|
|
||||||
# Add batch dimension if not exists
|
|
||||||
imgs_ = np.expand_dims(imgs_, axis=0)
|
|
||||||
# Batch prediction
|
|
||||||
age_predictions = self.model.predict_on_batch(imgs_)
|
|
||||||
apparent_ages = np.array(
|
|
||||||
[find_apparent_age(age_prediction) for age_prediction in age_predictions]
|
|
||||||
)
|
|
||||||
return apparent_ages
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def load_model(
|
def load_model(
|
||||||
url=WEIGHTS_URL,
|
url=WEIGHTS_URL,
|
||||||
) -> Model:
|
) -> Model:
|
||||||
|
@ -70,27 +70,6 @@ class GenderClient(Demography):
|
|||||||
|
|
||||||
return predictions
|
return predictions
|
||||||
|
|
||||||
|
|
||||||
def predicts(self, imgs: List[np.ndarray]) -> np.ndarray:
|
|
||||||
"""
|
|
||||||
Predict apparent ages of multiple faces
|
|
||||||
Args:
|
|
||||||
imgs (List[np.ndarray]): (n, 224, 224, 3)
|
|
||||||
Returns:
|
|
||||||
apparent_ages (np.ndarray): (n,)
|
|
||||||
"""
|
|
||||||
# Convert list to numpy array
|
|
||||||
imgs_:np.ndarray = np.array(imgs)
|
|
||||||
# Remove redundant dimensions
|
|
||||||
imgs_ = imgs_.squeeze()
|
|
||||||
# Check if the input is a single image
|
|
||||||
if len(imgs_.shape) == 3:
|
|
||||||
# Add batch dimension
|
|
||||||
imgs_ = np.expand_dims(imgs_, axis=0)
|
|
||||||
return self.model.predict_on_batch(imgs_)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def load_model(
|
def load_model(
|
||||||
url=WEIGHTS_URL,
|
url=WEIGHTS_URL,
|
||||||
) -> Model:
|
) -> Model:
|
||||||
|
Loading…
x
Reference in New Issue
Block a user