mirror of
https://github.com/serengil/deepface.git
synced 2025-06-07 12:05:22 +00:00
linting
This commit is contained in:
parent
da03b479d8
commit
f1734b2367
@ -387,7 +387,8 @@ def represent(
|
|||||||
Represent facial images as multi-dimensional vector embeddings.
|
Represent facial images as multi-dimensional vector embeddings.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
img_path (str, np.ndarray, IO[bytes], or Sequence[Union[str, np.ndarray, IO[bytes]]]): The exact path to the image, a numpy array
|
img_path (str, np.ndarray, IO[bytes], or Sequence[Union[str, np.ndarray, IO[bytes]]]):
|
||||||
|
The exact path to the image, a numpy array
|
||||||
in BGR format, a file object that supports at least `.read` and is opened in binary
|
in BGR format, a file object that supports at least `.read` and is opened in binary
|
||||||
mode, or a base64 encoded image. If the source image contains multiple faces,
|
mode, or a base64 encoded image. If the source image contains multiple faces,
|
||||||
the result will include information for each detected face. If a sequence is provided,
|
the result will include information for each detected face. If a sequence is provided,
|
||||||
|
@ -31,5 +31,4 @@ class FacialRecognition(ABC):
|
|||||||
embeddings = self.model(img, training=False).numpy()
|
embeddings = self.model(img, training=False).numpy()
|
||||||
if embeddings.shape[0] == 1:
|
if embeddings.shape[0] == 1:
|
||||||
return embeddings[0].tolist()
|
return embeddings[0].tolist()
|
||||||
else:
|
|
||||||
return embeddings.tolist()
|
return embeddings.tolist()
|
||||||
|
@ -53,7 +53,6 @@ class DlibClient(FacialRecognition):
|
|||||||
embeddings = [np.array(embedding).tolist() for embedding in embeddings]
|
embeddings = [np.array(embedding).tolist() for embedding in embeddings]
|
||||||
if len(embeddings) == 1:
|
if len(embeddings) == 1:
|
||||||
return embeddings[0]
|
return embeddings[0]
|
||||||
else:
|
|
||||||
return embeddings
|
return embeddings
|
||||||
|
|
||||||
|
|
||||||
|
@ -47,7 +47,6 @@ class SFaceClient(FacialRecognition):
|
|||||||
|
|
||||||
if embeddings.shape[0] == 1:
|
if embeddings.shape[0] == 1:
|
||||||
return embeddings[0].tolist()
|
return embeddings[0].tolist()
|
||||||
else:
|
|
||||||
return embeddings.tolist()
|
return embeddings.tolist()
|
||||||
|
|
||||||
|
|
||||||
|
@ -25,8 +25,10 @@ def represent(
|
|||||||
Represent facial images as multi-dimensional vector embeddings.
|
Represent facial images as multi-dimensional vector embeddings.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
img_path (str, np.ndarray, or Sequence[Union[str, np.ndarray]]): The exact path to the image, a numpy array in BGR format,
|
img_path (str, np.ndarray, or Sequence[Union[str, np.ndarray]]):
|
||||||
a base64 encoded image, or a sequence of these. If the source image contains multiple faces,
|
The exact path to the image, a numpy array in BGR format,
|
||||||
|
a base64 encoded image, or a sequence of these.
|
||||||
|
If the source image contains multiple faces,
|
||||||
the result will include information for each detected face.
|
the result will include information for each detected face.
|
||||||
|
|
||||||
model_name (str): Model for face recognition. Options: VGG-Face, Facenet, Facenet512,
|
model_name (str): Model for face recognition. Options: VGG-Face, Facenet, Facenet512,
|
||||||
@ -84,7 +86,8 @@ def represent(
|
|||||||
|
|
||||||
for single_img_path in images:
|
for single_img_path in images:
|
||||||
# ---------------------------------
|
# ---------------------------------
|
||||||
# we have run pre-process in verification. so, this can be skipped if it is coming from verify.
|
# we have run pre-process in verification.
|
||||||
|
# so, this can be skipped if it is coming from verify.
|
||||||
target_size = model.input_shape
|
target_size = model.input_shape
|
||||||
if detector_backend != "skip":
|
if detector_backend != "skip":
|
||||||
img_objs = detection.extract_faces(
|
img_objs = detection.extract_faces(
|
||||||
|
Loading…
x
Reference in New Issue
Block a user