mirror of
https://github.com/serengil/deepface.git
synced 2025-06-06 11:35:21 +00:00
Merge pull request #17 from uriafranko/uria-franko
passing already built models to analyze function as well
This commit is contained in:
commit
fc70aa0aad
1
Contributors.md
Normal file
1
Contributors.md
Normal file
@ -0,0 +1 @@
|
||||
uriafranko
|
@ -20,73 +20,74 @@ from deepface.basemodels import VGGFace, OpenFace, Facenet, FbDeepFace
|
||||
from deepface.extendedmodels import Age, Gender, Race, Emotion
|
||||
from deepface.commons import functions, realtime, distance as dst
|
||||
|
||||
|
||||
def verify(img1_path, img2_path=''
|
||||
, model_name ='VGG-Face', distance_metric = 'cosine', model = None):
|
||||
|
||||
|
||||
tic = time.time()
|
||||
|
||||
|
||||
if type(img1_path) == list:
|
||||
bulkProcess = True
|
||||
img_list = img1_path.copy()
|
||||
else:
|
||||
bulkProcess = False
|
||||
img_list = [[img1_path, img2_path]]
|
||||
|
||||
|
||||
#------------------------------
|
||||
|
||||
|
||||
if model == None:
|
||||
if model_name == 'VGG-Face':
|
||||
print("Using VGG-Face model backend and", distance_metric,"distance.")
|
||||
model = VGGFace.loadModel()
|
||||
|
||||
|
||||
elif model_name == 'OpenFace':
|
||||
print("Using OpenFace model backend", distance_metric,"distance.")
|
||||
model = OpenFace.loadModel()
|
||||
|
||||
|
||||
elif model_name == 'Facenet':
|
||||
print("Using Facenet model backend", distance_metric,"distance.")
|
||||
model = Facenet.loadModel()
|
||||
|
||||
|
||||
elif model_name == 'DeepFace':
|
||||
print("Using FB DeepFace model backend", distance_metric,"distance.")
|
||||
model = FbDeepFace.loadModel()
|
||||
|
||||
|
||||
else:
|
||||
raise ValueError("Invalid model_name passed - ", model_name)
|
||||
else: #model != None
|
||||
print("Already built model is passed")
|
||||
|
||||
|
||||
#------------------------------
|
||||
#face recognition models have different size of inputs
|
||||
input_shape = model.layers[0].input_shape[1:3]
|
||||
|
||||
#------------------------------
|
||||
|
||||
|
||||
#tuned thresholds for model and metric pair
|
||||
threshold = functions.findThreshold(model_name, distance_metric)
|
||||
|
||||
|
||||
#------------------------------
|
||||
resp_objects = []
|
||||
for instance in img_list:
|
||||
if type(instance) == list and len(instance) >= 2:
|
||||
img1_path = instance[0]
|
||||
img2_path = instance[1]
|
||||
|
||||
|
||||
#----------------------
|
||||
#crop and align faces
|
||||
|
||||
|
||||
img1 = functions.detectFace(img1_path, input_shape)
|
||||
img2 = functions.detectFace(img2_path, input_shape)
|
||||
|
||||
|
||||
#----------------------
|
||||
#find embeddings
|
||||
|
||||
img1_representation = model.predict(img1)[0,:]
|
||||
img2_representation = model.predict(img2)[0,:]
|
||||
|
||||
|
||||
#----------------------
|
||||
#find distances between embeddings
|
||||
|
||||
|
||||
if distance_metric == 'cosine':
|
||||
distance = dst.findCosineDistance(img1_representation, img2_representation)
|
||||
elif distance_metric == 'euclidean':
|
||||
@ -95,18 +96,18 @@ def verify(img1_path, img2_path=''
|
||||
distance = dst.findEuclideanDistance(dst.l2_normalize(img1_representation), dst.l2_normalize(img2_representation))
|
||||
else:
|
||||
raise ValueError("Invalid distance_metric passed - ", distance_metric)
|
||||
|
||||
|
||||
#----------------------
|
||||
#decision
|
||||
|
||||
|
||||
if distance <= threshold:
|
||||
identified = "true"
|
||||
else:
|
||||
identified = "false"
|
||||
|
||||
|
||||
#----------------------
|
||||
#response object
|
||||
|
||||
|
||||
resp_obj = "{"
|
||||
resp_obj += "\"verified\": "+identified
|
||||
resp_obj += ", \"distance\": "+str(distance)
|
||||
@ -114,30 +115,30 @@ def verify(img1_path, img2_path=''
|
||||
resp_obj += ", \"model\": \""+model_name+"\""
|
||||
resp_obj += ", \"similarity_metric\": \""+distance_metric+"\""
|
||||
resp_obj += "}"
|
||||
|
||||
|
||||
resp_obj = json.loads(resp_obj) #string to json
|
||||
|
||||
|
||||
if bulkProcess == True:
|
||||
resp_objects.append(resp_obj)
|
||||
else:
|
||||
K.clear_session()
|
||||
return resp_obj
|
||||
#----------------------
|
||||
|
||||
|
||||
else:
|
||||
raise ValueError("Invalid arguments passed to verify function: ", instance)
|
||||
|
||||
|
||||
#-------------------------
|
||||
|
||||
|
||||
toc = time.time()
|
||||
|
||||
|
||||
#print("identification lasts ",toc-tic," seconds")
|
||||
|
||||
|
||||
if bulkProcess == True:
|
||||
resp_obj = "{"
|
||||
|
||||
|
||||
for i in range(0, len(resp_objects)):
|
||||
resp_item = json.dumps(resp_objects[i])
|
||||
resp_item = json.dumps(resp_objects[i])
|
||||
|
||||
if i > 0:
|
||||
resp_obj += ", "
|
||||
@ -148,7 +149,8 @@ def verify(img1_path, img2_path=''
|
||||
return resp_obj
|
||||
#return resp_objects
|
||||
|
||||
def analyze(img_path, actions= []):
|
||||
|
||||
def analyze(img_path, actions= [], models= {}):
|
||||
|
||||
if type(img_path) == list:
|
||||
img_paths = img_path.copy()
|
||||
@ -156,129 +158,141 @@ def analyze(img_path, actions= []):
|
||||
else:
|
||||
img_paths = [img_path]
|
||||
bulkProcess = False
|
||||
|
||||
|
||||
#---------------------------------
|
||||
|
||||
|
||||
#if a specific target is not passed, then find them all
|
||||
if len(actions) == 0:
|
||||
actions= ['emotion', 'age', 'gender', 'race']
|
||||
|
||||
|
||||
print("Actions to do: ", actions)
|
||||
|
||||
|
||||
#---------------------------------
|
||||
|
||||
|
||||
if 'emotion' in actions:
|
||||
emotion_model = Emotion.loadModel()
|
||||
|
||||
if 'emotion' in models:
|
||||
emotion_model = models['emotion']
|
||||
else:
|
||||
emotion_model = Emotion.loadModel()
|
||||
|
||||
if 'age' in actions:
|
||||
age_model = Age.loadModel()
|
||||
|
||||
if 'age' in models:
|
||||
age_model = models['age']
|
||||
else:
|
||||
age_model = Age.loadModel()
|
||||
|
||||
if 'gender' in actions:
|
||||
gender_model = Gender.loadModel()
|
||||
|
||||
if 'gender' in models:
|
||||
gender_model = models['gender']
|
||||
else:
|
||||
gender_model = Gender.loadModel()
|
||||
|
||||
if 'race' in actions:
|
||||
race_model = Race.loadModel()
|
||||
if 'race' in models:
|
||||
race_model = models['race']
|
||||
else:
|
||||
race_model = Race.loadModel()
|
||||
#---------------------------------
|
||||
|
||||
|
||||
resp_objects = []
|
||||
for img_path in img_paths:
|
||||
|
||||
|
||||
resp_obj = "{"
|
||||
|
||||
|
||||
#TO-DO: do this in parallel
|
||||
|
||||
|
||||
pbar = tqdm(range(0,len(actions)), desc='Finding actions')
|
||||
|
||||
|
||||
action_idx = 0
|
||||
#for action in actions:
|
||||
for index in pbar:
|
||||
action = actions[index]
|
||||
pbar.set_description("Action: %s" % (action))
|
||||
|
||||
|
||||
if action_idx > 0:
|
||||
resp_obj += ", "
|
||||
|
||||
|
||||
if action == 'emotion':
|
||||
emotion_labels = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral']
|
||||
img = functions.detectFace(img_path, (48, 48), True)
|
||||
|
||||
|
||||
emotion_predictions = emotion_model.predict(img)[0,:]
|
||||
|
||||
|
||||
sum_of_predictions = emotion_predictions.sum()
|
||||
|
||||
|
||||
emotion_obj = "\"emotion\": {"
|
||||
for i in range(0, len(emotion_labels)):
|
||||
emotion_label = emotion_labels[i]
|
||||
emotion_prediction = 100 * emotion_predictions[i] / sum_of_predictions
|
||||
|
||||
|
||||
if i > 0: emotion_obj += ", "
|
||||
|
||||
|
||||
emotion_obj += "\"%s\": %s" % (emotion_label, emotion_prediction)
|
||||
|
||||
|
||||
emotion_obj += "}"
|
||||
|
||||
|
||||
emotion_obj += ", \"dominant_emotion\": \"%s\"" % (emotion_labels[np.argmax(emotion_predictions)])
|
||||
|
||||
|
||||
resp_obj += emotion_obj
|
||||
|
||||
|
||||
elif action == 'age':
|
||||
img = functions.detectFace(img_path, (224, 224), False) #just emotion model expects grayscale images
|
||||
#print("age prediction")
|
||||
age_predictions = age_model.predict(img)[0,:]
|
||||
apparent_age = Age.findApparentAge(age_predictions)
|
||||
|
||||
|
||||
resp_obj += "\"age\": %s" % (apparent_age)
|
||||
|
||||
|
||||
elif action == 'gender':
|
||||
img = functions.detectFace(img_path, (224, 224), False) #just emotion model expects grayscale images
|
||||
#print("gender prediction")
|
||||
|
||||
|
||||
gender_prediction = gender_model.predict(img)[0,:]
|
||||
|
||||
|
||||
if np.argmax(gender_prediction) == 0:
|
||||
gender = "Woman"
|
||||
elif np.argmax(gender_prediction) == 1:
|
||||
gender = "Man"
|
||||
|
||||
|
||||
resp_obj += "\"gender\": \"%s\"" % (gender)
|
||||
|
||||
|
||||
elif action == 'race':
|
||||
img = functions.detectFace(img_path, (224, 224), False) #just emotion model expects grayscale images
|
||||
race_predictions = race_model.predict(img)[0,:]
|
||||
race_labels = ['asian', 'indian', 'black', 'white', 'middle eastern', 'latino hispanic']
|
||||
|
||||
|
||||
sum_of_predictions = race_predictions.sum()
|
||||
|
||||
|
||||
race_obj = "\"race\": {"
|
||||
for i in range(0, len(race_labels)):
|
||||
race_label = race_labels[i]
|
||||
race_prediction = 100 * race_predictions[i] / sum_of_predictions
|
||||
|
||||
|
||||
if i > 0: race_obj += ", "
|
||||
|
||||
|
||||
race_obj += "\"%s\": %s" % (race_label, race_prediction)
|
||||
|
||||
|
||||
race_obj += "}"
|
||||
race_obj += ", \"dominant_race\": \"%s\"" % (race_labels[np.argmax(race_predictions)])
|
||||
|
||||
|
||||
resp_obj += race_obj
|
||||
|
||||
|
||||
action_idx = action_idx + 1
|
||||
|
||||
|
||||
resp_obj += "}"
|
||||
|
||||
|
||||
resp_obj = json.loads(resp_obj)
|
||||
|
||||
|
||||
if bulkProcess == True:
|
||||
resp_objects.append(resp_obj)
|
||||
else:
|
||||
return resp_obj
|
||||
|
||||
|
||||
if bulkProcess == True:
|
||||
resp_obj = "{"
|
||||
|
||||
|
||||
for i in range(0, len(resp_objects)):
|
||||
resp_item = json.dumps(resp_objects[i])
|
||||
resp_item = json.dumps(resp_objects[i])
|
||||
|
||||
if i > 0:
|
||||
resp_obj += ", "
|
||||
@ -289,13 +303,16 @@ def analyze(img_path, actions= []):
|
||||
return resp_obj
|
||||
#return resp_objects
|
||||
|
||||
|
||||
def detectFace(img_path):
|
||||
img = functions.detectFace(img_path)[0] #detectFace returns (1, 224, 224, 3)
|
||||
return img[:, :, ::-1] #bgr to rgb
|
||||
|
||||
|
||||
def stream(db_path, model_name ='VGG-Face', distance_metric = 'cosine', enable_face_analysis = True):
|
||||
realtime.analysis(db_path, model_name, distance_metric, enable_face_analysis)
|
||||
|
||||
|
||||
#---------------------------
|
||||
|
||||
functions.initializeFolder()
|
||||
|
Loading…
x
Reference in New Issue
Block a user