# stdlib dependencies from typing import List, Union # 3rd party dependencies import numpy as np import cv2 # project dependencies from deepface.commons import package_utils, weight_utils from deepface.models.Demography import Demography from deepface.commons.logger import Logger # dependency configuration tf_version = package_utils.get_tf_major_version() if tf_version == 1: from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D, AveragePooling2D, Flatten, Dense, Dropout else: from tensorflow.keras.models import Sequential from tensorflow.keras.layers import ( Conv2D, MaxPooling2D, AveragePooling2D, Flatten, Dense, Dropout, ) # Labels for the emotions that can be detected by the model. labels = ["angry", "disgust", "fear", "happy", "sad", "surprise", "neutral"] logger = Logger() # pylint: disable=line-too-long, disable=too-few-public-methods WEIGHTS_URL = "https://github.com/serengil/deepface_models/releases/download/v1.0/facial_expression_model_weights.h5" class EmotionClient(Demography): """ Emotion model class """ def __init__(self): self.model = load_model() self.model_name = "Emotion" def _preprocess_image(self, img: np.ndarray) -> np.ndarray: """ Preprocess single image for emotion detection Args: img: Input image (224, 224, 3) Returns: Preprocessed grayscale image (48, 48) """ img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) img_gray = cv2.resize(img_gray, (48, 48)) return img_gray def predict(self, img: Union[np.ndarray, List[np.ndarray]]) -> np.ndarray: """ Predict emotion probabilities for single or multiple faces Args: img: Single image as np.ndarray (224, 224, 3) or List of images as List[np.ndarray] or Batch of images as np.ndarray (n, 224, 224, 3) Returns: np.ndarray (n, n_emotions) where n_emotions is the number of emotion categories """ # Preprocessing input image or image list. imgs = self._preprocess_batch_or_single_input(img) # Preprocess each image and add channel dimension for grayscale images processed_imgs = np.expand_dims(np.array([self._preprocess_image(img) for img in imgs]), axis=-1) # Reshape input for model (expected shape=(n, 48, 48, 1)), where n is the batch size processed_imgs = processed_imgs.reshape(processed_imgs.shape[0], 48, 48, 1) # Prediction # Emotion model input shape is (48, 48, 1, n), where n is the batch size predictions = self._predict_internal(processed_imgs) return predictions def load_model( url=WEIGHTS_URL, ) -> Sequential: """ Consruct emotion model, download and load weights """ num_classes = 7 model = Sequential() # 1st convolution layer model.add(Conv2D(64, (5, 5), activation="relu", input_shape=(48, 48, 1))) model.add(MaxPooling2D(pool_size=(5, 5), strides=(2, 2))) # 2nd convolution layer model.add(Conv2D(64, (3, 3), activation="relu")) model.add(Conv2D(64, (3, 3), activation="relu")) model.add(AveragePooling2D(pool_size=(3, 3), strides=(2, 2))) # 3rd convolution layer model.add(Conv2D(128, (3, 3), activation="relu")) model.add(Conv2D(128, (3, 3), activation="relu")) model.add(AveragePooling2D(pool_size=(3, 3), strides=(2, 2))) model.add(Flatten()) # fully connected neural networks model.add(Dense(1024, activation="relu")) model.add(Dropout(0.2)) model.add(Dense(1024, activation="relu")) model.add(Dropout(0.2)) model.add(Dense(num_classes, activation="softmax")) # ---------------------------- weight_file = weight_utils.download_weights_if_necessary( file_name="facial_expression_model_weights.h5", source_url=url ) model = weight_utils.load_model_weights(model=model, weight_file=weight_file) return model