# built-in dependencies import os # 3rd party dependencies import cv2 import pandas as pd # project dependencies from deepface import DeepFace from deepface.modules import verification from deepface.commons import image_utils from deepface.commons.logger import Logger logger = Logger() threshold = verification.find_threshold(model_name="VGG-Face", distance_metric="cosine") def test_find_with_exact_path(): img_path = os.path.join("dataset", "img1.jpg") dfs = DeepFace.find(img_path=img_path, db_path="dataset", silent=True) assert len(dfs) > 0 for df in dfs: assert isinstance(df, pd.DataFrame) # one is img1.jpg itself identity_df = df[df["identity"] == img_path] assert identity_df.shape[0] > 0 # validate reproducability assert identity_df["distance"].values[0] < threshold df = df[df["identity"] != img_path] logger.debug(df.head()) assert df.shape[0] > 0 logger.info("✅ test find for exact path done") def test_find_with_array_input(): img_path = os.path.join("dataset", "img1.jpg") img1 = cv2.imread(img_path) dfs = DeepFace.find(img1, db_path="dataset", silent=True) assert len(dfs) > 0 for df in dfs: assert isinstance(df, pd.DataFrame) # one is img1.jpg itself identity_df = df[df["identity"] == img_path] assert identity_df.shape[0] > 0 # validate reproducability assert identity_df["distance"].values[0] < threshold df = df[df["identity"] != img_path] logger.debug(df.head()) assert df.shape[0] > 0 logger.info("✅ test find for array input done") def test_find_with_extracted_faces(): img_path = os.path.join("dataset", "img1.jpg") face_objs = DeepFace.extract_faces(img_path) img = face_objs[0]["face"] dfs = DeepFace.find(img, db_path="dataset", detector_backend="skip", silent=True) assert len(dfs) > 0 for df in dfs: assert isinstance(df, pd.DataFrame) # one is img1.jpg itself identity_df = df[df["identity"] == img_path] assert identity_df.shape[0] > 0 # validate reproducability assert identity_df["distance"].values[0] < threshold df = df[df["identity"] != img_path] logger.debug(df.head()) assert df.shape[0] > 0 logger.info("✅ test find for extracted face input done") def test_filetype_for_find(): """ only images as jpg and png can be loaded into database """ img_path = os.path.join("dataset", "img1.jpg") dfs = DeepFace.find(img_path=img_path, db_path="dataset", silent=True) df = dfs[0] # img47 is webp even though its extension is jpg assert df[df["identity"] == "dataset/img47.jpg"].shape[0] == 0 def test_filetype_for_find_bulk_embeddings(): imgs = image_utils.list_images("dataset") assert len(imgs) > 0 # img47 is webp even though its extension is jpg assert "dataset/img47.jpg" not in imgs