from flask import Flask from flask_mongoengine import MongoEngine from deepface import DeepFaceLite # import tensorflow as tf # from tensorflow.python.keras.backend import set_session import os """ initialize the ML engine """ db = MongoEngine() # sess = tf.Session() # graph = tf.get_default_graph() # set_session(sess) deepface = DeepFaceLite() """ database environment variable """ DB_NAME = os.environ.get('HAP_DB_NAME') DB_HOST = os.environ.get('HAP_DB_HOST') DB_PORT = os.environ.get('HAP_DB_PORT') DB_USERNAME = os.environ.get('HAP_DB_USERNAME') DB_PASSWORD = os.environ.get('HAP_DB_PASSWORD') def create_app(): """ return app instance :return: app instance """ app = Flask(__name__) if DB_USERNAME is not None and DB_PASSWORD is not None: app.config['MONGODB_SETTINGS'] = { 'db': DB_NAME, 'host': DB_HOST, 'port': int(DB_PORT), 'username': DB_USERNAME, 'password': DB_PASSWORD } else: app.config['MONGODB_SETTINGS'] = { 'db': DB_NAME, 'host': DB_HOST, 'port': int(DB_PORT) } db.init_app(app) return app