import os from tqdm import tqdm import numpy as np import pandas as pd import cv2 import time import re import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' from deepface.basemodels import VGGFace, OpenFace, Facenet, FbDeepFace, DeepID from deepface.basemodels.DlibResNet import DlibResNet from deepface.extendedmodels import Age, Gender, Race, Emotion from deepface.commons import functions, realtime, distance as dst def analysis(db_path, model_name, distance_metric, enable_face_analysis = True): input_shape = (224, 224) input_shape_x = input_shape[0]; input_shape_y = input_shape[1] text_color = (255,255,255) employees = [] #check passed db folder exists if os.path.isdir(db_path) == True: for r, d, f in os.walk(db_path): # r=root, d=directories, f = files for file in f: if ('.jpg' in file): #exact_path = os.path.join(r, file) exact_path = r + "/" + file #print(exact_path) employees.append(exact_path) if len(employees) == 0: print("WARNING: There is no image in this path ( ", db_path,") . Face recognition will not be performed.") #------------------------ if len(employees) > 0: if model_name == 'VGG-Face': print("Using VGG-Face model backend and", distance_metric,"distance.") model = VGGFace.loadModel() input_shape = (224, 224) elif model_name == 'OpenFace': print("Using OpenFace model backend", distance_metric,"distance.") model = OpenFace.loadModel() input_shape = (96, 96) elif model_name == 'Facenet': print("Using Facenet model backend", distance_metric,"distance.") model = Facenet.loadModel() input_shape = (160, 160) elif model_name == 'DeepFace': print("Using FB DeepFace model backend", distance_metric,"distance.") model = FbDeepFace.loadModel() input_shape = (152, 152) elif model_name == 'DeepID': print("Using DeepID model backend", distance_metric,"distance.") model = DeepID.loadModel() input_shape = (55, 47) elif model_name == 'Dlib': print("Using Dlib model backend", distance_metric,"distance.") model = DlibResNet() input_shape = (150, 150) else: raise ValueError("Invalid model_name passed - ", model_name) #------------------------ input_shape_x = input_shape[0] input_shape_y = input_shape[1] #tuned thresholds for model and metric pair threshold = functions.findThreshold(model_name, distance_metric) #------------------------ #facial attribute analysis models if enable_face_analysis == True: tic = time.time() emotion_model = Emotion.loadModel() print("Emotion model loaded") age_model = Age.loadModel() print("Age model loaded") gender_model = Gender.loadModel() print("Gender model loaded") toc = time.time() print("Facial attibute analysis models loaded in ",toc-tic," seconds") #------------------------ #find embeddings for employee list tic = time.time() pbar = tqdm(range(0, len(employees)), desc='Finding embeddings') embeddings = [] #for employee in employees: for index in pbar: employee = employees[index] pbar.set_description("Finding embedding for %s" % (employee.split("/")[-1])) embedding = [] img = functions.detectFace(employee, (input_shape_y, input_shape_x)) img_representation = model.predict(img)[0,:] embedding.append(employee) embedding.append(img_representation) embeddings.append(embedding) df = pd.DataFrame(embeddings, columns = ['employee', 'embedding']) df['distance_metric'] = distance_metric toc = time.time() print("Embeddings found for given data set in ", toc-tic," seconds") #----------------------- time_threshold = 5; frame_threshold = 5 pivot_img_size = 112 #face recognition result image #----------------------- opencv_path = functions.get_opencv_path() face_detector_path = opencv_path+"haarcascade_frontalface_default.xml" face_cascade = cv2.CascadeClassifier(face_detector_path) #----------------------- freeze = False face_detected = False face_included_frames = 0 #freeze screen if face detected sequantially 5 frames freezed_frame = 0 tic = time.time() cap = cv2.VideoCapture(0) #webcam #cap = cv2.VideoCapture("C:/Users/IS96273/Desktop/skype-video-1.mp4") #video while(True): ret, img = cap.read() #cv2.namedWindow('img', cv2.WINDOW_FREERATIO) #cv2.setWindowProperty('img', cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN) raw_img = img.copy() resolution = img.shape resolution_x = img.shape[1]; resolution_y = img.shape[0] if freeze == False: faces = face_cascade.detectMultiScale(img, 1.3, 5) if len(faces) == 0: face_included_frames = 0 else: faces = [] detected_faces = [] face_index = 0 for (x,y,w,h) in faces: if w > 130: #discard small detected faces face_detected = True if face_index == 0: face_included_frames = face_included_frames + 1 #increase frame for a single face cv2.rectangle(img, (x,y), (x+w,y+h), (67,67,67), 1) #draw rectangle to main image cv2.putText(img, str(frame_threshold - face_included_frames), (int(x+w/4),int(y+h/1.5)), cv2.FONT_HERSHEY_SIMPLEX, 4, (255, 255, 255), 2) detected_face = img[int(y):int(y+h), int(x):int(x+w)] #crop detected face #------------------------------------- detected_faces.append((x,y,w,h)) face_index = face_index + 1 #------------------------------------- if face_detected == True and face_included_frames == frame_threshold and freeze == False: freeze = True #base_img = img.copy() base_img = raw_img.copy() detected_faces_final = detected_faces.copy() tic = time.time() if freeze == True: toc = time.time() if (toc - tic) < time_threshold: if freezed_frame == 0: freeze_img = base_img.copy() #freeze_img = np.zeros(resolution, np.uint8) #here, np.uint8 handles showing white area issue for detected_face in detected_faces_final: x = detected_face[0]; y = detected_face[1] w = detected_face[2]; h = detected_face[3] cv2.rectangle(freeze_img, (x,y), (x+w,y+h), (67,67,67), 1) #draw rectangle to main image #------------------------------- #apply deep learning for custom_face custom_face = base_img[y:y+h, x:x+w] #------------------------------- #facial attribute analysis if enable_face_analysis == True: gray_img = functions.detectFace(custom_face, (48, 48), True) emotion_labels = ['Angry', 'Disgust', 'Fear', 'Happy', 'Sad', 'Surprise', 'Neutral'] emotion_predictions = emotion_model.predict(gray_img)[0,:] sum_of_predictions = emotion_predictions.sum() mood_items = [] for i in range(0, len(emotion_labels)): mood_item = [] emotion_label = emotion_labels[i] emotion_prediction = 100 * emotion_predictions[i] / sum_of_predictions mood_item.append(emotion_label) mood_item.append(emotion_prediction) mood_items.append(mood_item) emotion_df = pd.DataFrame(mood_items, columns = ["emotion", "score"]) emotion_df = emotion_df.sort_values(by = ["score"], ascending=False).reset_index(drop=True) #background of mood box #transparency overlay = freeze_img.copy() opacity = 0.4 if x+w+pivot_img_size < resolution_x: #right cv2.rectangle(freeze_img #, (x+w,y+20) , (x+w,y) , (x+w+pivot_img_size, y+h) , (64,64,64),cv2.FILLED) cv2.addWeighted(overlay, opacity, freeze_img, 1 - opacity, 0, freeze_img) elif x-pivot_img_size > 0: #left cv2.rectangle(freeze_img #, (x-pivot_img_size,y+20) , (x-pivot_img_size,y) , (x, y+h) , (64,64,64),cv2.FILLED) cv2.addWeighted(overlay, opacity, freeze_img, 1 - opacity, 0, freeze_img) for index, instance in emotion_df.iterrows(): emotion_label = "%s " % (instance['emotion']) emotion_score = instance['score']/100 bar_x = 35 #this is the size if an emotion is 100% bar_x = int(bar_x * emotion_score) if x+w+pivot_img_size < resolution_x: text_location_y = y + 20 + (index+1) * 20 text_location_x = x+w if text_location_y < y + h: cv2.putText(freeze_img, emotion_label, (text_location_x, text_location_y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1) cv2.rectangle(freeze_img , (x+w+70, y + 13 + (index+1) * 20) , (x+w+70+bar_x, y + 13 + (index+1) * 20 + 5) , (255,255,255), cv2.FILLED) elif x-pivot_img_size > 0: text_location_y = y + 20 + (index+1) * 20 text_location_x = x-pivot_img_size if text_location_y <= y+h: cv2.putText(freeze_img, emotion_label, (text_location_x, text_location_y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1) cv2.rectangle(freeze_img , (x-pivot_img_size+70, y + 13 + (index+1) * 20) , (x-pivot_img_size+70+bar_x, y + 13 + (index+1) * 20 + 5) , (255,255,255), cv2.FILLED) #------------------------------- face_224 = functions.detectFace(custom_face, (224, 224), False) age_predictions = age_model.predict(face_224)[0,:] apparent_age = Age.findApparentAge(age_predictions) #------------------------------- gender_prediction = gender_model.predict(face_224)[0,:] if np.argmax(gender_prediction) == 0: gender = "W" elif np.argmax(gender_prediction) == 1: gender = "M" #print(str(int(apparent_age))," years old ", dominant_emotion, " ", gender) analysis_report = str(int(apparent_age))+" "+gender #------------------------------- info_box_color = (46,200,255) #top if y - pivot_img_size + int(pivot_img_size/5) > 0: triangle_coordinates = np.array( [ (x+int(w/2), y) , (x+int(w/2)-int(w/10), y-int(pivot_img_size/3)) , (x+int(w/2)+int(w/10), y-int(pivot_img_size/3)) ] ) cv2.drawContours(freeze_img, [triangle_coordinates], 0, info_box_color, -1) cv2.rectangle(freeze_img, (x+int(w/5), y-pivot_img_size+int(pivot_img_size/5)), (x+w-int(w/5), y-int(pivot_img_size/3)), info_box_color, cv2.FILLED) cv2.putText(freeze_img, analysis_report, (x+int(w/3.5), y - int(pivot_img_size/2.1)), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 111, 255), 2) #bottom elif y + h + pivot_img_size - int(pivot_img_size/5) < resolution_y: triangle_coordinates = np.array( [ (x+int(w/2), y+h) , (x+int(w/2)-int(w/10), y+h+int(pivot_img_size/3)) , (x+int(w/2)+int(w/10), y+h+int(pivot_img_size/3)) ] ) cv2.drawContours(freeze_img, [triangle_coordinates], 0, info_box_color, -1) cv2.rectangle(freeze_img, (x+int(w/5), y + h + int(pivot_img_size/3)), (x+w-int(w/5), y+h+pivot_img_size-int(pivot_img_size/5)), info_box_color, cv2.FILLED) cv2.putText(freeze_img, analysis_report, (x+int(w/3.5), y + h + int(pivot_img_size/1.5)), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 111, 255), 2) #------------------------------- #face recognition custom_face = functions.detectFace(custom_face, (input_shape_y, input_shape_x)) #check detectFace function handled if custom_face.shape[1:3] == input_shape: if df.shape[0] > 0: #if there are images to verify, apply face recognition img1_representation = model.predict(custom_face)[0,:] #print(freezed_frame," - ",img1_representation[0:5]) def findDistance(row): distance_metric = row['distance_metric'] img2_representation = row['embedding'] distance = 1000 #initialize very large value if distance_metric == 'cosine': distance = dst.findCosineDistance(img1_representation, img2_representation) elif distance_metric == 'euclidean': distance = dst.findEuclideanDistance(img1_representation, img2_representation) elif distance_metric == 'euclidean_l2': distance = dst.findEuclideanDistance(dst.l2_normalize(img1_representation), dst.l2_normalize(img2_representation)) return distance df['distance'] = df.apply(findDistance, axis = 1) df = df.sort_values(by = ["distance"]) candidate = df.iloc[0] employee_name = candidate['employee'] best_distance = candidate['distance'] #print(candidate[['employee', 'distance']].values) #if True: if best_distance <= threshold: #print(employee_name) display_img = cv2.imread(employee_name) display_img = cv2.resize(display_img, (pivot_img_size, pivot_img_size)) label = employee_name.split("/")[-1].replace(".jpg", "") label = re.sub('[0-9]', '', label) try: if y - pivot_img_size > 0 and x + w + pivot_img_size < resolution_x: #top right freeze_img[y - pivot_img_size:y, x+w:x+w+pivot_img_size] = display_img overlay = freeze_img.copy(); opacity = 0.4 cv2.rectangle(freeze_img,(x+w,y),(x+w+pivot_img_size, y+20),(46,200,255),cv2.FILLED) cv2.addWeighted(overlay, opacity, freeze_img, 1 - opacity, 0, freeze_img) cv2.putText(freeze_img, label, (x+w, y+10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, text_color, 1) #connect face and text cv2.line(freeze_img,(x+int(w/2), y), (x+3*int(w/4), y-int(pivot_img_size/2)),(67,67,67),1) cv2.line(freeze_img, (x+3*int(w/4), y-int(pivot_img_size/2)), (x+w, y - int(pivot_img_size/2)), (67,67,67),1) elif y + h + pivot_img_size < resolution_y and x - pivot_img_size > 0: #bottom left freeze_img[y+h:y+h+pivot_img_size, x-pivot_img_size:x] = display_img overlay = freeze_img.copy(); opacity = 0.4 cv2.rectangle(freeze_img,(x-pivot_img_size,y+h-20),(x, y+h),(46,200,255),cv2.FILLED) cv2.addWeighted(overlay, opacity, freeze_img, 1 - opacity, 0, freeze_img) cv2.putText(freeze_img, label, (x - pivot_img_size, y+h-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, text_color, 1) #connect face and text cv2.line(freeze_img,(x+int(w/2), y+h), (x+int(w/2)-int(w/4), y+h+int(pivot_img_size/2)),(67,67,67),1) cv2.line(freeze_img, (x+int(w/2)-int(w/4), y+h+int(pivot_img_size/2)), (x, y+h+int(pivot_img_size/2)), (67,67,67),1) elif y - pivot_img_size > 0 and x - pivot_img_size > 0: #top left freeze_img[y-pivot_img_size:y, x-pivot_img_size:x] = display_img overlay = freeze_img.copy(); opacity = 0.4 cv2.rectangle(freeze_img,(x- pivot_img_size,y),(x, y+20),(46,200,255),cv2.FILLED) cv2.addWeighted(overlay, opacity, freeze_img, 1 - opacity, 0, freeze_img) cv2.putText(freeze_img, label, (x - pivot_img_size, y+10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, text_color, 1) #connect face and text cv2.line(freeze_img,(x+int(w/2), y), (x+int(w/2)-int(w/4), y-int(pivot_img_size/2)),(67,67,67),1) cv2.line(freeze_img, (x+int(w/2)-int(w/4), y-int(pivot_img_size/2)), (x, y - int(pivot_img_size/2)), (67,67,67),1) elif x+w+pivot_img_size < resolution_x and y + h + pivot_img_size < resolution_y: #bottom righ freeze_img[y+h:y+h+pivot_img_size, x+w:x+w+pivot_img_size] = display_img overlay = freeze_img.copy(); opacity = 0.4 cv2.rectangle(freeze_img,(x+w,y+h-20),(x+w+pivot_img_size, y+h),(46,200,255),cv2.FILLED) cv2.addWeighted(overlay, opacity, freeze_img, 1 - opacity, 0, freeze_img) cv2.putText(freeze_img, label, (x+w, y+h-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, text_color, 1) #connect face and text cv2.line(freeze_img,(x+int(w/2), y+h), (x+int(w/2)+int(w/4), y+h+int(pivot_img_size/2)),(67,67,67),1) cv2.line(freeze_img, (x+int(w/2)+int(w/4), y+h+int(pivot_img_size/2)), (x+w, y+h+int(pivot_img_size/2)), (67,67,67),1) except Exception as err: print(str(err)) tic = time.time() #in this way, freezed image can show 5 seconds #------------------------------- time_left = int(time_threshold - (toc - tic) + 1) cv2.rectangle(freeze_img, (10, 10), (90, 50), (67,67,67), -10) cv2.putText(freeze_img, str(time_left), (40, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 1) cv2.imshow('img', freeze_img) freezed_frame = freezed_frame + 1 else: face_detected = False face_included_frames = 0 freeze = False freezed_frame = 0 else: cv2.imshow('img',img) if cv2.waitKey(1) & 0xFF == ord('q'): #press q to quit break #kill open cv things cap.release() cv2.destroyAllWindows()