import numpy as np def findCosineDistance(source_representation, test_representation): a = np.matmul(np.transpose(source_representation), test_representation) b = np.sum(np.multiply(source_representation, source_representation)) c = np.sum(np.multiply(test_representation, test_representation)) return 1 - (a / (np.sqrt(b) * np.sqrt(c))) def findEuclideanDistance(source_representation, test_representation): euclidean_distance = source_representation - test_representation euclidean_distance = np.sum(np.multiply(euclidean_distance, euclidean_distance)) euclidean_distance = np.sqrt(euclidean_distance) return euclidean_distance def l2_normalize(x): return x / np.sqrt(np.sum(np.multiply(x, x))) def findThreshold(model_name, distance_metric): base_threshold = {'cosine': 0.40, 'euclidean': 0.55, 'euclidean_l2': 0.75} thresholds = { 'VGG-Face': {'cosine': 0.40, 'euclidean': 0.55, 'euclidean_l2': 0.75}, 'OpenFace': {'cosine': 0.10, 'euclidean': 0.55, 'euclidean_l2': 0.55}, 'Facenet': {'cosine': 0.40, 'euclidean': 10, 'euclidean_l2': 0.80}, 'DeepFace': {'cosine': 0.23, 'euclidean': 64, 'euclidean_l2': 0.64}, 'DeepID': {'cosine': 0.015, 'euclidean': 45, 'euclidean_l2': 0.17}, 'Dlib': {'cosine': 0.07, 'euclidean': 0.6, 'euclidean_l2': 0.6}, 'ArcFace': {'cosine': 0.6871912959056619, 'euclidean': 4.1591468986978075, 'euclidean_l2': 1.1315718048269017} } threshold = thresholds.get(model_name, base_threshold).get(distance_metric, 0.4) return threshold