from typing import List import os import zipfile import gdown import numpy as np from deepface.commons import package_utils, folder_utils from deepface.commons.logger import Logger from deepface.models.FacialRecognition import FacialRecognition logger = Logger(module="basemodels.FbDeepFace") # -------------------------------- # dependency configuration tf_version = package_utils.get_tf_major_version() if tf_version == 1: from keras.models import Model, Sequential from keras.layers import ( Convolution2D, LocallyConnected2D, MaxPooling2D, Flatten, Dense, Dropout, ) else: from tensorflow.keras.models import Model, Sequential from tensorflow.keras.layers import ( Convolution2D, LocallyConnected2D, MaxPooling2D, Flatten, Dense, Dropout, ) # ------------------------------------- # pylint: disable=line-too-long, too-few-public-methods class DeepFaceClient(FacialRecognition): """ Fb's DeepFace model class """ def __init__(self): self.model = load_model() self.model_name = "DeepFace" self.input_shape = (152, 152) self.output_shape = 4096 def find_embeddings(self, img: np.ndarray) -> List[float]: """ find embeddings with OpenFace model Args: img (np.ndarray): pre-loaded image in BGR Returns embeddings (list): multi-dimensional vector """ # model.predict causes memory issue when it is called in a for loop # embedding = model.predict(img, verbose=0)[0].tolist() return self.model(img, training=False).numpy()[0].tolist() def load_model( url="https://github.com/swghosh/DeepFace/releases/download/weights-vggface2-2d-aligned/VGGFace2_DeepFace_weights_val-0.9034.h5.zip", ) -> Model: """ Construct DeepFace model, download its weights and load """ base_model = Sequential() base_model.add( Convolution2D(32, (11, 11), activation="relu", name="C1", input_shape=(152, 152, 3)) ) base_model.add(MaxPooling2D(pool_size=3, strides=2, padding="same", name="M2")) base_model.add(Convolution2D(16, (9, 9), activation="relu", name="C3")) base_model.add(LocallyConnected2D(16, (9, 9), activation="relu", name="L4")) base_model.add(LocallyConnected2D(16, (7, 7), strides=2, activation="relu", name="L5")) base_model.add(LocallyConnected2D(16, (5, 5), activation="relu", name="L6")) base_model.add(Flatten(name="F0")) base_model.add(Dense(4096, activation="relu", name="F7")) base_model.add(Dropout(rate=0.5, name="D0")) base_model.add(Dense(8631, activation="softmax", name="F8")) # --------------------------------- home = folder_utils.get_deepface_home() if os.path.isfile(home + "/.deepface/weights/VGGFace2_DeepFace_weights_val-0.9034.h5") != True: logger.info("VGGFace2_DeepFace_weights_val-0.9034.h5 will be downloaded...") output = home + "/.deepface/weights/VGGFace2_DeepFace_weights_val-0.9034.h5.zip" gdown.download(url, output, quiet=False) # unzip VGGFace2_DeepFace_weights_val-0.9034.h5.zip with zipfile.ZipFile(output, "r") as zip_ref: zip_ref.extractall(home + "/.deepface/weights/") base_model.load_weights(home + "/.deepface/weights/VGGFace2_DeepFace_weights_val-0.9034.h5") # drop F8 and D0. F7 is the representation layer. deepface_model = Model(inputs=base_model.layers[0].input, outputs=base_model.layers[-3].output) return deepface_model