# stdlib dependencies from typing import List, Union # 3rd party dependencies import numpy as np # project dependencies from deepface.models.facial_recognition import VGGFace from deepface.commons import package_utils, weight_utils from deepface.models.Demography import Demography from deepface.commons.logger import Logger logger = Logger() # ---------------------------------------- # dependency configurations tf_version = package_utils.get_tf_major_version() if tf_version == 1: from keras.models import Model, Sequential from keras.layers import Convolution2D, Flatten, Activation else: from tensorflow.keras.models import Model, Sequential from tensorflow.keras.layers import Convolution2D, Flatten, Activation # ---------------------------------------- WEIGHTS_URL = ( "https://github.com/serengil/deepface_models/releases/download/v1.0/age_model_weights.h5" ) # pylint: disable=too-few-public-methods class ApparentAgeClient(Demography): """ Age model class """ def __init__(self): self.model = load_model() self.model_name = "Age" def predict(self, img: Union[np.ndarray, List[np.ndarray]]) -> Union[np.float64, np.ndarray]: """ Predict apparent age(s) for single or multiple faces Args: img: Single image as np.ndarray (224, 224, 3) or List of images as List[np.ndarray] or Batch of images as np.ndarray (n, 224, 224, 3) Returns: Single age as np.float64 or Multiple ages as np.ndarray (n,) """ # Convert to numpy array if input is list if isinstance(img, list): imgs = np.array(img) else: imgs = img # Remove batch dimension if exists imgs = imgs.squeeze() # Check input dimension if len(imgs.shape) == 3: # Single image - add batch dimension imgs = np.expand_dims(imgs, axis=0) is_single = True else: is_single = False # Batch prediction age_predictions = self.model.predict_on_batch(imgs) # Calculate apparent ages apparent_ages = np.array( [find_apparent_age(age_prediction) for age_prediction in age_predictions] ) # Return single value for single image if is_single: return apparent_ages[0] return apparent_ages def predicts(self, imgs: List[np.ndarray]) -> np.ndarray: """ Predict apparent ages of multiple faces Args: imgs (List[np.ndarray]): (n, 224, 224, 3) Returns: apparent_ages (np.ndarray): (n,) """ # Convert list to numpy array imgs_:np.ndarray = np.array(imgs) # Remove batch dimension if exists imgs_ = imgs_.squeeze() # Check if the input is a single image if len(imgs_.shape) == 3: # Add batch dimension if not exists imgs_ = np.expand_dims(imgs_, axis=0) # Batch prediction age_predictions = self.model.predict_on_batch(imgs_) apparent_ages = np.array( [find_apparent_age(age_prediction) for age_prediction in age_predictions] ) return apparent_ages def load_model( url=WEIGHTS_URL, ) -> Model: """ Construct age model, download its weights and load Returns: model (Model) """ model = VGGFace.base_model() # -------------------------- classes = 101 base_model_output = Sequential() base_model_output = Convolution2D(classes, (1, 1), name="predictions")(model.layers[-4].output) base_model_output = Flatten()(base_model_output) base_model_output = Activation("softmax")(base_model_output) # -------------------------- age_model = Model(inputs=model.inputs, outputs=base_model_output) # -------------------------- # load weights weight_file = weight_utils.download_weights_if_necessary( file_name="age_model_weights.h5", source_url=url ) age_model = weight_utils.load_model_weights(model=age_model, weight_file=weight_file) return age_model def find_apparent_age(age_predictions: np.ndarray) -> np.float64: """ Find apparent age prediction from a given probas of ages Args: age_predictions (?) Returns: apparent_age (float) """ output_indexes = np.arange(0, 101) apparent_age = np.sum(age_predictions * output_indexes) return apparent_age