from deepface import DeepFace from deepface.commons.logger import Logger logger = Logger("tests/test_represent.py") def test_standard_represent(): img_path = "dataset/img1.jpg" embedding_objs = DeepFace.represent(img_path) for embedding_obj in embedding_objs: embedding = embedding_obj["embedding"] logger.debug(f"Function returned {len(embedding)} dimensional vector") assert len(embedding) == 2622 logger.info("✅ test standard represent function done") def test_represent_for_skipped_detector_backend(): face_img = "dataset/img5.jpg" img_objs = DeepFace.represent(img_path=face_img, detector_backend="skip") assert len(img_objs) >= 1 img_obj = img_objs[0] assert "embedding" in img_obj.keys() assert "facial_area" in img_obj.keys() assert isinstance(img_obj["facial_area"], dict) assert "x" in img_obj["facial_area"].keys() assert "y" in img_obj["facial_area"].keys() assert "w" in img_obj["facial_area"].keys() assert "h" in img_obj["facial_area"].keys() assert "face_confidence" in img_obj.keys() logger.info("✅ test represent function for skipped detector backend done")