deepface/deepface/commons/image_utils.py
2024-08-12 03:10:20 +03:00

149 lines
4.2 KiB
Python

# built-in dependencies
import os
import io
from typing import List, Union, Tuple
import hashlib
import base64
from pathlib import Path
# 3rd party dependencies
import requests
import numpy as np
import cv2
from PIL import Image
def list_images(path: str) -> List[str]:
"""
List images in a given path
Args:
path (str): path's location
Returns:
images (list): list of exact image paths
"""
images = []
for r, _, f in os.walk(path):
for file in f:
exact_path = os.path.join(r, file)
ext_lower = os.path.splitext(exact_path)[-1].lower()
if ext_lower not in {".jpg", ".jpeg", ".png"}:
continue
with Image.open(exact_path) as img: # lazy
if img.format.lower() in {"jpeg", "png"}:
images.append(exact_path)
return images
def find_image_hash(file_path: str) -> str:
"""
Find the hash of given image file with its properties
finding the hash of image content is costly operation
Args:
file_path (str): exact image path
Returns:
hash (str): digest with sha1 algorithm
"""
file_stats = os.stat(file_path)
# some properties
file_size = file_stats.st_size
creation_time = file_stats.st_ctime
modification_time = file_stats.st_mtime
properties = f"{file_size}-{creation_time}-{modification_time}"
hasher = hashlib.sha1()
hasher.update(properties.encode("utf-8"))
return hasher.hexdigest()
def load_image(img: Union[str, np.ndarray]) -> Tuple[np.ndarray, str]:
"""
Load image from path, url, base64 or numpy array.
Args:
img: a path, url, base64 or numpy array.
Returns:
image (numpy array): the loaded image in BGR format
image name (str): image name itself
"""
# The image is already a numpy array
if isinstance(img, np.ndarray):
return img, "numpy array"
if isinstance(img, Path):
img = str(img)
if not isinstance(img, str):
raise ValueError(f"img must be numpy array or str but it is {type(img)}")
# The image is a base64 string
if img.startswith("data:image/"):
return load_image_from_base64(img), "base64 encoded string"
# The image is a url
if img.lower().startswith(("http://", "https://")):
return load_image_from_web(url=img), img
# The image is a path
if not os.path.isfile(img):
raise ValueError(f"Confirm that {img} exists")
# image must be a file on the system then
# image name must have english characters
if not img.isascii():
raise ValueError(f"Input image must not have non-english characters - {img}")
img_obj_bgr = cv2.imread(img)
# img_obj_rgb = cv2.cvtColor(img_obj_bgr, cv2.COLOR_BGR2RGB)
return img_obj_bgr, img
def load_image_from_base64(uri: str) -> np.ndarray:
"""
Load image from base64 string.
Args:
uri: a base64 string.
Returns:
numpy array: the loaded image.
"""
encoded_data_parts = uri.split(",")
if len(encoded_data_parts) < 2:
raise ValueError("format error in base64 encoded string")
encoded_data = encoded_data_parts[1]
decoded_bytes = base64.b64decode(encoded_data)
# similar to find functionality, we are just considering these extensions
# content type is safer option than file extension
with Image.open(io.BytesIO(decoded_bytes)) as img:
file_type = img.format.lower()
if file_type not in {"jpeg", "png"}:
raise ValueError(f"Input image can be jpg or png, but it is {file_type}")
nparr = np.fromstring(decoded_bytes, np.uint8)
img_bgr = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
# img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
return img_bgr
def load_image_from_web(url: str) -> np.ndarray:
"""
Loading an image from web
Args:
url: link for the image
Returns:
img (np.ndarray): equivalent to pre-loaded image from opencv (BGR format)
"""
response = requests.get(url, stream=True, timeout=60)
response.raise_for_status()
image_array = np.asarray(bytearray(response.raw.read()), dtype=np.uint8)
img = cv2.imdecode(image_array, cv2.IMREAD_COLOR)
return img