mirror of
https://github.com/serengil/deepface.git
synced 2025-06-04 02:20:06 +00:00
178 lines
4.8 KiB
Python
178 lines
4.8 KiB
Python
import os
|
|
import gdown
|
|
from deepface.commons import package_utils, folder_utils
|
|
from deepface.models.FacialRecognition import FacialRecognition
|
|
|
|
from deepface.commons.logger import Logger
|
|
|
|
logger = Logger()
|
|
|
|
# pylint: disable=unsubscriptable-object
|
|
|
|
# --------------------------------
|
|
# dependency configuration
|
|
|
|
tf_version = package_utils.get_tf_major_version()
|
|
|
|
if tf_version == 1:
|
|
from keras.models import Model
|
|
from keras.engine import training
|
|
from keras.layers import (
|
|
ZeroPadding2D,
|
|
Input,
|
|
Conv2D,
|
|
BatchNormalization,
|
|
PReLU,
|
|
Add,
|
|
Dropout,
|
|
Flatten,
|
|
Dense,
|
|
)
|
|
else:
|
|
from tensorflow.keras.models import Model
|
|
from tensorflow.python.keras.engine import training
|
|
from tensorflow.keras.layers import (
|
|
ZeroPadding2D,
|
|
Input,
|
|
Conv2D,
|
|
BatchNormalization,
|
|
PReLU,
|
|
Add,
|
|
Dropout,
|
|
Flatten,
|
|
Dense,
|
|
)
|
|
|
|
# pylint: disable=too-few-public-methods
|
|
class ArcFaceClient(FacialRecognition):
|
|
"""
|
|
ArcFace model class
|
|
"""
|
|
|
|
def __init__(self):
|
|
self.model = load_model()
|
|
self.model_name = "ArcFace"
|
|
self.input_shape = (112, 112)
|
|
self.output_shape = 512
|
|
|
|
|
|
def load_model(
|
|
url="https://github.com/serengil/deepface_models/releases/download/v1.0/arcface_weights.h5",
|
|
) -> Model:
|
|
"""
|
|
Construct ArcFace model, download its weights and load
|
|
Returns:
|
|
model (Model)
|
|
"""
|
|
base_model = ResNet34()
|
|
inputs = base_model.inputs[0]
|
|
arcface_model = base_model.outputs[0]
|
|
arcface_model = BatchNormalization(momentum=0.9, epsilon=2e-5)(arcface_model)
|
|
arcface_model = Dropout(0.4)(arcface_model)
|
|
arcface_model = Flatten()(arcface_model)
|
|
arcface_model = Dense(512, activation=None, use_bias=True, kernel_initializer="glorot_normal")(
|
|
arcface_model
|
|
)
|
|
embedding = BatchNormalization(momentum=0.9, epsilon=2e-5, name="embedding", scale=True)(
|
|
arcface_model
|
|
)
|
|
model = Model(inputs, embedding, name=base_model.name)
|
|
|
|
# ---------------------------------------
|
|
# check the availability of pre-trained weights
|
|
|
|
home = folder_utils.get_deepface_home()
|
|
|
|
file_name = "arcface_weights.h5"
|
|
output = os.path.join(home, ".deepface/weights", file_name)
|
|
|
|
if not os.path.isfile(output):
|
|
logger.info(f"{file_name} will be downloaded to {output}")
|
|
gdown.download(url, output, quiet=False)
|
|
# ---------------------------------------
|
|
|
|
model.load_weights(output)
|
|
|
|
return model
|
|
|
|
|
|
def ResNet34() -> Model:
|
|
"""
|
|
ResNet34 model
|
|
Returns:
|
|
model (Model)
|
|
"""
|
|
img_input = Input(shape=(112, 112, 3))
|
|
|
|
x = ZeroPadding2D(padding=1, name="conv1_pad")(img_input)
|
|
x = Conv2D(
|
|
64, 3, strides=1, use_bias=False, kernel_initializer="glorot_normal", name="conv1_conv"
|
|
)(x)
|
|
x = BatchNormalization(axis=3, epsilon=2e-5, momentum=0.9, name="conv1_bn")(x)
|
|
x = PReLU(shared_axes=[1, 2], name="conv1_prelu")(x)
|
|
x = stack_fn(x)
|
|
|
|
model = training.Model(img_input, x, name="ResNet34")
|
|
|
|
return model
|
|
|
|
|
|
def block1(x, filters, kernel_size=3, stride=1, conv_shortcut=True, name=None):
|
|
bn_axis = 3
|
|
|
|
if conv_shortcut:
|
|
shortcut = Conv2D(
|
|
filters,
|
|
1,
|
|
strides=stride,
|
|
use_bias=False,
|
|
kernel_initializer="glorot_normal",
|
|
name=name + "_0_conv",
|
|
)(x)
|
|
shortcut = BatchNormalization(
|
|
axis=bn_axis, epsilon=2e-5, momentum=0.9, name=name + "_0_bn"
|
|
)(shortcut)
|
|
else:
|
|
shortcut = x
|
|
|
|
x = BatchNormalization(axis=bn_axis, epsilon=2e-5, momentum=0.9, name=name + "_1_bn")(x)
|
|
x = ZeroPadding2D(padding=1, name=name + "_1_pad")(x)
|
|
x = Conv2D(
|
|
filters,
|
|
3,
|
|
strides=1,
|
|
kernel_initializer="glorot_normal",
|
|
use_bias=False,
|
|
name=name + "_1_conv",
|
|
)(x)
|
|
x = BatchNormalization(axis=bn_axis, epsilon=2e-5, momentum=0.9, name=name + "_2_bn")(x)
|
|
x = PReLU(shared_axes=[1, 2], name=name + "_1_prelu")(x)
|
|
|
|
x = ZeroPadding2D(padding=1, name=name + "_2_pad")(x)
|
|
x = Conv2D(
|
|
filters,
|
|
kernel_size,
|
|
strides=stride,
|
|
kernel_initializer="glorot_normal",
|
|
use_bias=False,
|
|
name=name + "_2_conv",
|
|
)(x)
|
|
x = BatchNormalization(axis=bn_axis, epsilon=2e-5, momentum=0.9, name=name + "_3_bn")(x)
|
|
|
|
x = Add(name=name + "_add")([shortcut, x])
|
|
return x
|
|
|
|
|
|
def stack1(x, filters, blocks, stride1=2, name=None):
|
|
x = block1(x, filters, stride=stride1, name=name + "_block1")
|
|
for i in range(2, blocks + 1):
|
|
x = block1(x, filters, conv_shortcut=False, name=name + "_block" + str(i))
|
|
return x
|
|
|
|
|
|
def stack_fn(x):
|
|
x = stack1(x, 64, 3, name="conv2")
|
|
x = stack1(x, 128, 4, name="conv3")
|
|
x = stack1(x, 256, 6, name="conv4")
|
|
return stack1(x, 512, 3, name="conv5")
|