2024-08-12 03:10:20 +03:00

178 lines
4.8 KiB
Python

import os
import gdown
from deepface.commons import package_utils, folder_utils
from deepface.models.FacialRecognition import FacialRecognition
from deepface.commons.logger import Logger
logger = Logger()
# pylint: disable=unsubscriptable-object
# --------------------------------
# dependency configuration
tf_version = package_utils.get_tf_major_version()
if tf_version == 1:
from keras.models import Model
from keras.engine import training
from keras.layers import (
ZeroPadding2D,
Input,
Conv2D,
BatchNormalization,
PReLU,
Add,
Dropout,
Flatten,
Dense,
)
else:
from tensorflow.keras.models import Model
from tensorflow.python.keras.engine import training
from tensorflow.keras.layers import (
ZeroPadding2D,
Input,
Conv2D,
BatchNormalization,
PReLU,
Add,
Dropout,
Flatten,
Dense,
)
# pylint: disable=too-few-public-methods
class ArcFaceClient(FacialRecognition):
"""
ArcFace model class
"""
def __init__(self):
self.model = load_model()
self.model_name = "ArcFace"
self.input_shape = (112, 112)
self.output_shape = 512
def load_model(
url="https://github.com/serengil/deepface_models/releases/download/v1.0/arcface_weights.h5",
) -> Model:
"""
Construct ArcFace model, download its weights and load
Returns:
model (Model)
"""
base_model = ResNet34()
inputs = base_model.inputs[0]
arcface_model = base_model.outputs[0]
arcface_model = BatchNormalization(momentum=0.9, epsilon=2e-5)(arcface_model)
arcface_model = Dropout(0.4)(arcface_model)
arcface_model = Flatten()(arcface_model)
arcface_model = Dense(512, activation=None, use_bias=True, kernel_initializer="glorot_normal")(
arcface_model
)
embedding = BatchNormalization(momentum=0.9, epsilon=2e-5, name="embedding", scale=True)(
arcface_model
)
model = Model(inputs, embedding, name=base_model.name)
# ---------------------------------------
# check the availability of pre-trained weights
home = folder_utils.get_deepface_home()
file_name = "arcface_weights.h5"
output = os.path.join(home, ".deepface/weights", file_name)
if not os.path.isfile(output):
logger.info(f"{file_name} will be downloaded to {output}")
gdown.download(url, output, quiet=False)
# ---------------------------------------
model.load_weights(output)
return model
def ResNet34() -> Model:
"""
ResNet34 model
Returns:
model (Model)
"""
img_input = Input(shape=(112, 112, 3))
x = ZeroPadding2D(padding=1, name="conv1_pad")(img_input)
x = Conv2D(
64, 3, strides=1, use_bias=False, kernel_initializer="glorot_normal", name="conv1_conv"
)(x)
x = BatchNormalization(axis=3, epsilon=2e-5, momentum=0.9, name="conv1_bn")(x)
x = PReLU(shared_axes=[1, 2], name="conv1_prelu")(x)
x = stack_fn(x)
model = training.Model(img_input, x, name="ResNet34")
return model
def block1(x, filters, kernel_size=3, stride=1, conv_shortcut=True, name=None):
bn_axis = 3
if conv_shortcut:
shortcut = Conv2D(
filters,
1,
strides=stride,
use_bias=False,
kernel_initializer="glorot_normal",
name=name + "_0_conv",
)(x)
shortcut = BatchNormalization(
axis=bn_axis, epsilon=2e-5, momentum=0.9, name=name + "_0_bn"
)(shortcut)
else:
shortcut = x
x = BatchNormalization(axis=bn_axis, epsilon=2e-5, momentum=0.9, name=name + "_1_bn")(x)
x = ZeroPadding2D(padding=1, name=name + "_1_pad")(x)
x = Conv2D(
filters,
3,
strides=1,
kernel_initializer="glorot_normal",
use_bias=False,
name=name + "_1_conv",
)(x)
x = BatchNormalization(axis=bn_axis, epsilon=2e-5, momentum=0.9, name=name + "_2_bn")(x)
x = PReLU(shared_axes=[1, 2], name=name + "_1_prelu")(x)
x = ZeroPadding2D(padding=1, name=name + "_2_pad")(x)
x = Conv2D(
filters,
kernel_size,
strides=stride,
kernel_initializer="glorot_normal",
use_bias=False,
name=name + "_2_conv",
)(x)
x = BatchNormalization(axis=bn_axis, epsilon=2e-5, momentum=0.9, name=name + "_3_bn")(x)
x = Add(name=name + "_add")([shortcut, x])
return x
def stack1(x, filters, blocks, stride1=2, name=None):
x = block1(x, filters, stride=stride1, name=name + "_block1")
for i in range(2, blocks + 1):
x = block1(x, filters, conv_shortcut=False, name=name + "_block" + str(i))
return x
def stack_fn(x):
x = stack1(x, 64, 3, name="conv2")
x = stack1(x, 128, 4, name="conv3")
x = stack1(x, 256, 6, name="conv4")
return stack1(x, 512, 3, name="conv5")