141 lines
4.5 KiB
Python

import os
import gdown
import tensorflow as tf
from deepface.commons import functions
from deepface.commons.logger import Logger
from deepface.models.FacialRecognition import FacialRecognition
logger = Logger(module="basemodels.VGGFace")
# ---------------------------------------
tf_version = int(tf.__version__.split(".", maxsplit=1)[0])
if tf_version == 1:
from keras.models import Model, Sequential
from keras.layers import (
Convolution2D,
ZeroPadding2D,
MaxPooling2D,
Flatten,
Dropout,
Activation,
Lambda,
)
from keras import backend as K
else:
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.layers import (
Convolution2D,
ZeroPadding2D,
MaxPooling2D,
Flatten,
Dropout,
Activation,
Lambda,
)
from tensorflow.keras import backend as K
# ---------------------------------------
# pylint: disable=too-few-public-methods
class VggFace(FacialRecognition):
"""
VGG-Face model class
"""
def __init__(self):
self.model = load_model()
self.model_name = "VGG-Face"
def base_model() -> Sequential:
"""
Base model of VGG-Face being used for classification - not to find embeddings
Returns:
model (Sequential): model was trained to classify 2622 identities
"""
model = Sequential()
model.add(ZeroPadding2D((1, 1), input_shape=(224, 224, 3)))
model.add(Convolution2D(64, (3, 3), activation="relu"))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(64, (3, 3), activation="relu"))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(128, (3, 3), activation="relu"))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(128, (3, 3), activation="relu"))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(256, (3, 3), activation="relu"))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(256, (3, 3), activation="relu"))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(256, (3, 3), activation="relu"))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, (3, 3), activation="relu"))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, (3, 3), activation="relu"))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, (3, 3), activation="relu"))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, (3, 3), activation="relu"))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, (3, 3), activation="relu"))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, (3, 3), activation="relu"))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(Convolution2D(4096, (7, 7), activation="relu"))
model.add(Dropout(0.5))
model.add(Convolution2D(4096, (1, 1), activation="relu"))
model.add(Dropout(0.5))
model.add(Convolution2D(2622, (1, 1)))
model.add(Flatten())
model.add(Activation("softmax"))
return model
def load_model(
url="https://github.com/serengil/deepface_models/releases/download/v1.0/vgg_face_weights.h5",
) -> Model:
"""
Final VGG-Face model being used for finding embeddings
Returns:
model (Model): returning 4096 dimensional vectors
"""
model = base_model()
home = functions.get_deepface_home()
output = home + "/.deepface/weights/vgg_face_weights.h5"
if os.path.isfile(output) != True:
logger.info("vgg_face_weights.h5 will be downloaded...")
gdown.download(url, output, quiet=False)
model.load_weights(output)
# 2622d dimensional model
# vgg_face_descriptor = Model(inputs=model.layers[0].input, outputs=model.layers[-2].output)
# 4096 dimensional model offers 6% to 14% increasement on accuracy!
# - softmax causes underfitting
# - added normalization layer to avoid underfitting with euclidean
# as described here: https://github.com/serengil/deepface/issues/944
base_model_output = Sequential()
base_model_output = Flatten()(model.layers[-5].output)
base_model_output = Lambda(lambda x: K.l2_normalize(x, axis=1), name="norm_layer")(
base_model_output
)
vgg_face_descriptor = Model(inputs=model.input, outputs=base_model_output)
return vgg_face_descriptor