deepface/deepface/modules/detection.py
2024-08-31 14:17:10 +01:00

411 lines
15 KiB
Python

# built-in dependencies
from typing import Any, Dict, List, Tuple, Union, Optional
# 3rd part dependencies
from heapq import nlargest
import numpy as np
import cv2
# project dependencies
from deepface.modules import modeling
from deepface.models.Detector import Detector, DetectedFace, FacialAreaRegion
from deepface.commons import image_utils
from deepface.commons.logger import Logger
logger = Logger()
# pylint: disable=no-else-raise
def extract_faces(
img_path: Union[str, np.ndarray],
detector_backend: str = "opencv",
enforce_detection: bool = True,
align: bool = True,
expand_percentage: int = 0,
grayscale: bool = False,
color_face: str = "rgb",
normalize_face: bool = True,
anti_spoofing: bool = False,
max_faces: Optional[int] = None,
) -> List[Dict[str, Any]]:
"""
Extract faces from a given image
Args:
img_path (str or np.ndarray): Path to the first image. Accepts exact image path
as a string, numpy array (BGR), or base64 encoded images.
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'centerface' or 'skip'
(default is opencv)
enforce_detection (boolean): If no face is detected in an image, raise an exception.
Default is True. Set to False to avoid the exception for low-resolution images.
align (bool): Flag to enable face alignment (default is True).
expand_percentage (int): expand detected facial area with a percentage.
grayscale (boolean): (Deprecated) Flag to convert the output face image to grayscale
(default is False).
color_face (string): Color to return face image output. Options: 'rgb', 'bgr' or 'gray'
(default is 'rgb').
normalize_face (boolean): Flag to enable normalization (divide by 255) of the output
face image output face image normalization (default is True).
anti_spoofing (boolean): Flag to enable anti spoofing (default is False).
Returns:
results (List[Dict[str, Any]]): A list of dictionaries, where each dictionary contains:
- "face" (np.ndarray): The detected face as a NumPy array in RGB format.
- "facial_area" (Dict[str, Any]): The detected face's regions as a dictionary containing:
- keys 'x', 'y', 'w', 'h' with int values
- keys 'left_eye', 'right_eye' with a tuple of 2 ints as values.
left eye and right eye are eyes on the left and right respectively with respect
to the person itself instead of observer.
- "confidence" (float): The confidence score associated with the detected face.
- "is_real" (boolean): antispoofing analyze result. this key is just available in the
result only if anti_spoofing is set to True in input arguments.
- "antispoof_score" (float): score of antispoofing analyze result. this key is
just available in the result only if anti_spoofing is set to True in input arguments.
"""
resp_objs = []
# img might be path, base64 or numpy array. Convert it to numpy whatever it is.
img, img_name = image_utils.load_image(img_path)
if img is None:
raise ValueError(f"Exception while loading {img_name}")
height, width, _ = img.shape
base_region = FacialAreaRegion(x=0, y=0, w=width, h=height, confidence=0)
if detector_backend == "skip":
face_objs = [DetectedFace(img=img, facial_area=base_region, confidence=0)]
else:
face_objs = detect_faces(
detector_backend=detector_backend,
img=img,
align=align,
expand_percentage=expand_percentage,
max_faces=max_faces,
)
# in case of no face found
if len(face_objs) == 0 and enforce_detection is True:
if img_name is not None:
raise ValueError(
f"Face could not be detected in {img_name}."
"Please confirm that the picture is a face photo "
"or consider to set enforce_detection param to False."
)
else:
raise ValueError(
"Face could not be detected. Please confirm that the picture is a face photo "
"or consider to set enforce_detection param to False."
)
if len(face_objs) == 0 and enforce_detection is False:
face_objs = [DetectedFace(img=img, facial_area=base_region, confidence=0)]
for face_obj in face_objs:
current_img = face_obj.img
current_region = face_obj.facial_area
if current_img.shape[0] == 0 or current_img.shape[1] == 0:
continue
if grayscale is True:
logger.warn("Parameter grayscale is deprecated. Use color_face instead.")
current_img = cv2.cvtColor(current_img, cv2.COLOR_BGR2GRAY)
else:
if color_face == "rgb":
current_img = current_img[:, :, ::-1]
elif color_face == "bgr":
pass # image is in BGR
elif color_face == "gray":
current_img = cv2.cvtColor(current_img, cv2.COLOR_BGR2GRAY)
else:
raise ValueError(f"The color_face can be rgb, bgr or gray, but it is {color_face}.")
if normalize_face:
current_img = current_img / 255 # normalize input in [0, 1]
# cast to int for flask, and do final checks for borders
x = max(0, int(current_region.x))
y = max(0, int(current_region.y))
w = min(width - x - 1, int(current_region.w))
h = min(height - y - 1, int(current_region.h))
resp_obj = {
"face": current_img,
"facial_area": {
"x": x,
"y": y,
"w": w,
"h": h,
"left_eye": current_region.left_eye,
"right_eye": current_region.right_eye,
},
"confidence": round(float(current_region.confidence or 0), 2),
}
if anti_spoofing is True:
antispoof_model = modeling.build_model(task="spoofing", model_name="Fasnet")
is_real, antispoof_score = antispoof_model.analyze(img=img, facial_area=(x, y, w, h))
resp_obj["is_real"] = is_real
resp_obj["antispoof_score"] = antispoof_score
resp_objs.append(resp_obj)
if len(resp_objs) == 0 and enforce_detection == True:
raise ValueError(
f"Exception while extracting faces from {img_name}."
"Consider to set enforce_detection arg to False."
)
return resp_objs
def detect_faces(
detector_backend: str,
img: np.ndarray,
align: bool = True,
expand_percentage: int = 0,
max_faces: Optional[int] = None,
) -> List[DetectedFace]:
"""
Detect face(s) from a given image
Args:
detector_backend (str): detector name
img (np.ndarray): pre-loaded image
align (bool): enable or disable alignment after detection
expand_percentage (int): expand detected facial area with a percentage (default is 0).
Returns:
results (List[DetectedFace]): A list of DetectedFace objects
where each object contains:
- img (np.ndarray): The detected face as a NumPy array.
- facial_area (FacialAreaRegion): The facial area region represented as x, y, w, h,
left_eye and right eye. left eye and right eye are eyes on the left and right
with respect to the person instead of observer.
- confidence (float): The confidence score associated with the detected face.
"""
height, width, _ = img.shape
face_detector: Detector = modeling.build_model(
task="face_detector", model_name=detector_backend
)
# validate expand percentage score
if expand_percentage < 0:
logger.warn(
f"Expand percentage cannot be negative but you set it to {expand_percentage}."
"Overwritten it to 0."
)
expand_percentage = 0
# If faces are close to the upper boundary, alignment move them outside
# Add a black border around an image to avoid this.
height_border = int(0.5 * height)
width_border = int(0.5 * width)
if align is True:
img = cv2.copyMakeBorder(
img,
height_border,
height_border,
width_border,
width_border,
cv2.BORDER_CONSTANT,
value=[0, 0, 0], # Color of the border (black)
)
# find facial areas of given image
facial_areas = face_detector.detect_faces(img)
if max_faces is not None and max_faces < len(facial_areas):
facial_areas = nlargest(
max_faces, facial_areas, key=lambda facial_area: facial_area.w * facial_area.h
)
return [
expand_and_align_face(
facial_area=facial_area,
img=img,
align=align,
expand_percentage=expand_percentage,
width_border=width_border,
height_border=height_border,
)
for facial_area in facial_areas
]
def expand_and_align_face(
facial_area: FacialAreaRegion,
img: np.ndarray,
align: bool,
expand_percentage: int,
width_border: int,
height_border: int,
) -> DetectedFace:
x = facial_area.x
y = facial_area.y
w = facial_area.w
h = facial_area.h
left_eye = facial_area.left_eye
right_eye = facial_area.right_eye
confidence = facial_area.confidence
if expand_percentage > 0:
# Expand the facial region height and width by the provided percentage
# ensuring that the expanded region stays within img.shape limits
expanded_w = w + int(w * expand_percentage / 100)
expanded_h = h + int(h * expand_percentage / 100)
x = max(0, x - int((expanded_w - w) / 2))
y = max(0, y - int((expanded_h - h) / 2))
w = min(img.shape[1] - x, expanded_w)
h = min(img.shape[0] - y, expanded_h)
# extract detected face unaligned
detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
# align original image, then find projection of detected face area after alignment
if align is True: # and left_eye is not None and right_eye is not None:
aligned_img, angle = align_img_wrt_eyes(img=img, left_eye=left_eye, right_eye=right_eye)
rotated_x1, rotated_y1, rotated_x2, rotated_y2 = project_facial_area(
facial_area=(x, y, x + w, y + h), angle=angle, size=(img.shape[0], img.shape[1])
)
detected_face = aligned_img[
int(rotated_y1) : int(rotated_y2), int(rotated_x1) : int(rotated_x2)
]
# restore x, y, le and re before border added
x = x - width_border
y = y - height_border
# w and h will not change
if left_eye is not None:
left_eye = (left_eye[0] - width_border, left_eye[1] - height_border)
if right_eye is not None:
right_eye = (right_eye[0] - width_border, right_eye[1] - height_border)
return DetectedFace(
img=detected_face,
facial_area=FacialAreaRegion(
x=x, y=y, h=h, w=w, confidence=confidence, left_eye=left_eye, right_eye=right_eye
),
confidence=confidence,
)
def align_img_wrt_eyes(
img: np.ndarray,
left_eye: Union[list, tuple],
right_eye: Union[list, tuple],
) -> Tuple[np.ndarray, float]:
"""
Align a given image horizantally with respect to their left and right eye locations
Args:
img (np.ndarray): pre-loaded image with detected face
left_eye (list or tuple): coordinates of left eye with respect to the person itself
right_eye(list or tuple): coordinates of right eye with respect to the person itself
Returns:
img (np.ndarray): aligned facial image
"""
# if eye could not be detected for the given image, return image itself
if left_eye is None or right_eye is None:
return img, 0
# sometimes unexpectedly detected images come with nil dimensions
if img.shape[0] == 0 or img.shape[1] == 0:
return img, 0
angle = float(np.degrees(np.arctan2(left_eye[1] - right_eye[1], left_eye[0] - right_eye[0])))
(h, w) = img.shape[:2]
center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, angle, 1.0)
img = cv2.warpAffine(
img, M, (w, h), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_CONSTANT, borderValue=(0, 0, 0)
)
return img, angle
def project_facial_area(
facial_area: Tuple[int, int, int, int], angle: float, size: Tuple[int, int]
) -> Tuple[int, int, int, int]:
"""
Update pre-calculated facial area coordinates after image itself
rotated with respect to the eyes.
Inspried from the work of @UmutDeniz26 - github.com/serengil/retinaface/pull/80
Args:
facial_area (tuple of int): Representing the (x1, y1, x2, y2) of the facial area.
x2 is equal to x1 + w1, and y2 is equal to y1 + h1
angle (float): Angle of rotation in degrees. Its sign determines the direction of rotation.
Note that angles > 360 degrees are normalized to the range [0, 360).
size (tuple of int): Tuple representing the size of the image (width, height).
Returns:
rotated_coordinates (tuple of int): Representing the new coordinates
(x1, y1, x2, y2) or (x1, y1, x1+w1, y1+h1) of the rotated facial area.
"""
# Normalize the witdh of the angle so we don't have to
# worry about rotations greater than 360 degrees.
# We workaround the quirky behavior of the modulo operator
# for negative angle values.
direction = 1 if angle >= 0 else -1
angle = abs(angle) % 360
if angle == 0:
return facial_area
# Angle in radians
angle = angle * np.pi / 180
height, weight = size
# Translate the facial area to the center of the image
x = (facial_area[0] + facial_area[2]) / 2 - weight / 2
y = (facial_area[1] + facial_area[3]) / 2 - height / 2
# Rotate the facial area
x_new = x * np.cos(angle) + y * direction * np.sin(angle)
y_new = -x * direction * np.sin(angle) + y * np.cos(angle)
# Translate the facial area back to the original position
x_new = x_new + weight / 2
y_new = y_new + height / 2
# Calculate projected coordinates after alignment
x1 = x_new - (facial_area[2] - facial_area[0]) / 2
y1 = y_new - (facial_area[3] - facial_area[1]) / 2
x2 = x_new + (facial_area[2] - facial_area[0]) / 2
y2 = y_new + (facial_area[3] - facial_area[1]) / 2
# validate projected coordinates are in image's boundaries
x1 = max(int(x1), 0)
y1 = max(int(y1), 0)
x2 = min(int(x2), weight)
y2 = min(int(y2), height)
return (x1, y1, x2, y2)