mirror of
https://github.com/serengil/deepface.git
synced 2025-06-08 12:35:22 +00:00
153 lines
5.0 KiB
Python
153 lines
5.0 KiB
Python
from typing import List
|
|
import os
|
|
import gdown
|
|
import numpy as np
|
|
from deepface.commons import functions
|
|
from deepface.commons.logger import Logger
|
|
from deepface.models.FacialRecognition import FacialRecognition
|
|
|
|
logger = Logger(module="basemodels.VGGFace")
|
|
|
|
# ---------------------------------------
|
|
|
|
tf_version = functions.get_tf_major_version()
|
|
if tf_version == 1:
|
|
from keras.models import Model, Sequential
|
|
from keras.layers import (
|
|
Convolution2D,
|
|
ZeroPadding2D,
|
|
MaxPooling2D,
|
|
Flatten,
|
|
Dropout,
|
|
Activation,
|
|
Lambda,
|
|
)
|
|
from keras import backend as K
|
|
else:
|
|
from tensorflow.keras.models import Model, Sequential
|
|
from tensorflow.keras.layers import (
|
|
Convolution2D,
|
|
ZeroPadding2D,
|
|
MaxPooling2D,
|
|
Flatten,
|
|
Dropout,
|
|
Activation,
|
|
Lambda,
|
|
)
|
|
from tensorflow.keras import backend as K
|
|
|
|
# ---------------------------------------
|
|
|
|
# pylint: disable=too-few-public-methods
|
|
class VggFaceClient(FacialRecognition):
|
|
"""
|
|
VGG-Face model class
|
|
"""
|
|
|
|
def __init__(self):
|
|
self.model = load_model()
|
|
self.model_name = "VGG-Face"
|
|
|
|
def find_embeddings(self, img: np.ndarray) -> List[float]:
|
|
"""
|
|
find embeddings with VGG-Face model
|
|
Args:
|
|
img (np.ndarray): pre-loaded image in BGR
|
|
Returns
|
|
embeddings (list): multi-dimensional vector
|
|
"""
|
|
# model.predict causes memory issue when it is called in a for loop
|
|
# embedding = model.predict(img, verbose=0)[0].tolist()
|
|
return self.model(img, training=False).numpy()[0].tolist()
|
|
|
|
|
|
def base_model() -> Sequential:
|
|
"""
|
|
Base model of VGG-Face being used for classification - not to find embeddings
|
|
Returns:
|
|
model (Sequential): model was trained to classify 2622 identities
|
|
"""
|
|
model = Sequential()
|
|
model.add(ZeroPadding2D((1, 1), input_shape=(224, 224, 3)))
|
|
model.add(Convolution2D(64, (3, 3), activation="relu"))
|
|
model.add(ZeroPadding2D((1, 1)))
|
|
model.add(Convolution2D(64, (3, 3), activation="relu"))
|
|
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
|
|
|
|
model.add(ZeroPadding2D((1, 1)))
|
|
model.add(Convolution2D(128, (3, 3), activation="relu"))
|
|
model.add(ZeroPadding2D((1, 1)))
|
|
model.add(Convolution2D(128, (3, 3), activation="relu"))
|
|
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
|
|
|
|
model.add(ZeroPadding2D((1, 1)))
|
|
model.add(Convolution2D(256, (3, 3), activation="relu"))
|
|
model.add(ZeroPadding2D((1, 1)))
|
|
model.add(Convolution2D(256, (3, 3), activation="relu"))
|
|
model.add(ZeroPadding2D((1, 1)))
|
|
model.add(Convolution2D(256, (3, 3), activation="relu"))
|
|
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
|
|
|
|
model.add(ZeroPadding2D((1, 1)))
|
|
model.add(Convolution2D(512, (3, 3), activation="relu"))
|
|
model.add(ZeroPadding2D((1, 1)))
|
|
model.add(Convolution2D(512, (3, 3), activation="relu"))
|
|
model.add(ZeroPadding2D((1, 1)))
|
|
model.add(Convolution2D(512, (3, 3), activation="relu"))
|
|
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
|
|
|
|
model.add(ZeroPadding2D((1, 1)))
|
|
model.add(Convolution2D(512, (3, 3), activation="relu"))
|
|
model.add(ZeroPadding2D((1, 1)))
|
|
model.add(Convolution2D(512, (3, 3), activation="relu"))
|
|
model.add(ZeroPadding2D((1, 1)))
|
|
model.add(Convolution2D(512, (3, 3), activation="relu"))
|
|
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
|
|
|
|
model.add(Convolution2D(4096, (7, 7), activation="relu"))
|
|
model.add(Dropout(0.5))
|
|
model.add(Convolution2D(4096, (1, 1), activation="relu"))
|
|
model.add(Dropout(0.5))
|
|
model.add(Convolution2D(2622, (1, 1)))
|
|
model.add(Flatten())
|
|
model.add(Activation("softmax"))
|
|
|
|
return model
|
|
|
|
|
|
def load_model(
|
|
url="https://github.com/serengil/deepface_models/releases/download/v1.0/vgg_face_weights.h5",
|
|
) -> Model:
|
|
"""
|
|
Final VGG-Face model being used for finding embeddings
|
|
Returns:
|
|
model (Model): returning 4096 dimensional vectors
|
|
"""
|
|
|
|
model = base_model()
|
|
|
|
home = functions.get_deepface_home()
|
|
output = home + "/.deepface/weights/vgg_face_weights.h5"
|
|
|
|
if os.path.isfile(output) != True:
|
|
logger.info("vgg_face_weights.h5 will be downloaded...")
|
|
gdown.download(url, output, quiet=False)
|
|
|
|
model.load_weights(output)
|
|
|
|
# 2622d dimensional model
|
|
# vgg_face_descriptor = Model(inputs=model.layers[0].input, outputs=model.layers[-2].output)
|
|
|
|
# 4096 dimensional model offers 6% to 14% increasement on accuracy!
|
|
# - softmax causes underfitting
|
|
# - added normalization layer to avoid underfitting with euclidean
|
|
# as described here: https://github.com/serengil/deepface/issues/944
|
|
base_model_output = Sequential()
|
|
base_model_output = Flatten()(model.layers[-5].output)
|
|
base_model_output = Lambda(lambda x: K.l2_normalize(x, axis=1), name="norm_layer")(
|
|
base_model_output
|
|
)
|
|
vgg_face_descriptor = Model(inputs=model.input, outputs=base_model_output)
|
|
|
|
return vgg_face_descriptor
|