112 lines
3.3 KiB
Python

# stdlib dependencies
from typing import List, Union
# 3rd party dependencies
import numpy as np
# project dependencies
from deepface.models.facial_recognition import VGGFace
from deepface.commons import package_utils, weight_utils
from deepface.models.Demography import Demography
from deepface.commons.logger import Logger
# pylint: disable=line-too-long
# dependency configurations
tf_version = package_utils.get_tf_major_version()
if tf_version == 1:
from keras.models import Model, Sequential
from keras.layers import Convolution2D, Flatten, Activation
else:
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.layers import Convolution2D, Flatten, Activation
WEIGHTS_URL = (
"https://github.com/serengil/deepface_models/releases/download/v1.0/race_model_single_batch.h5"
)
# Labels for the ethnic phenotypes that can be detected by the model.
labels = ["asian", "indian", "black", "white", "middle eastern", "latino hispanic"]
logger = Logger()
# pylint: disable=too-few-public-methods
class RaceClient(Demography):
"""
Race model class
"""
def __init__(self):
self.model = load_model()
self.model_name = "Race"
def predict(self, img: Union[np.ndarray, List[np.ndarray]]) -> Union[np.ndarray, np.ndarray]:
"""
Predict race probabilities for single or multiple faces
Args:
img: Single image as np.ndarray (224, 224, 3) or
List of images as List[np.ndarray] or
Batch of images as np.ndarray (n, 224, 224, 3)
Returns:
Single prediction as np.ndarray (n_races,) [race_probs] or
Multiple predictions as np.ndarray (n, n_races)
where n_races is the number of race categories
"""
# Convert to numpy array if input is list
if isinstance(img, list):
imgs = np.array(img)
else:
imgs = img
# Remove batch dimension if exists
imgs = imgs.squeeze()
# Check input dimension
if len(imgs.shape) == 3:
# Single image - add batch dimension
imgs = np.expand_dims(imgs, axis=0)
is_single = True
else:
is_single = False
# Batch prediction
predictions = self.model.predict_on_batch(imgs)
# Return single prediction for single image
if is_single:
return predictions[0]
return predictions
def load_model(
url=WEIGHTS_URL,
) -> Model:
"""
Construct race model, download its weights and load
"""
model = VGGFace.base_model()
# --------------------------
classes = 6
base_model_output = Sequential()
base_model_output = Convolution2D(classes, (1, 1), name="predictions")(model.layers[-4].output)
base_model_output = Flatten()(base_model_output)
base_model_output = Activation("softmax")(base_model_output)
# --------------------------
race_model = Model(inputs=model.input, outputs=base_model_output)
# --------------------------
# load weights
weight_file = weight_utils.download_weights_if_necessary(
file_name="race_model_single_batch.h5", source_url=url
)
race_model = weight_utils.load_model_weights(model=race_model, weight_file=weight_file)
return race_model