mirror of
https://github.com/serengil/deepface.git
synced 2025-06-07 12:05:22 +00:00
77 lines
2.3 KiB
Python
77 lines
2.3 KiB
Python
# 3rd party dependencies
|
|
import numpy as np
|
|
|
|
# project dependencies
|
|
from deepface.models.facial_recognition import VGGFace
|
|
from deepface.commons import package_utils, weight_utils
|
|
from deepface.models.Demography import Demography
|
|
from deepface.commons.logger import Logger
|
|
|
|
logger = Logger()
|
|
|
|
# --------------------------
|
|
# pylint: disable=line-too-long
|
|
# --------------------------
|
|
# dependency configurations
|
|
tf_version = package_utils.get_tf_major_version()
|
|
|
|
if tf_version == 1:
|
|
from keras.models import Model, Sequential
|
|
from keras.layers import Convolution2D, Flatten, Activation
|
|
else:
|
|
from tensorflow.keras.models import Model, Sequential
|
|
from tensorflow.keras.layers import Convolution2D, Flatten, Activation
|
|
# --------------------------
|
|
# Labels for the ethnic phenotypes that can be detected by the model.
|
|
labels = ["asian", "indian", "black", "white", "middle eastern", "latino hispanic"]
|
|
|
|
# pylint: disable=too-few-public-methods
|
|
class RaceClient(Demography):
|
|
"""
|
|
Race model class
|
|
"""
|
|
|
|
def __init__(self):
|
|
self.model = load_model()
|
|
self.model_name = "Race"
|
|
|
|
def predict(self, img: np.ndarray) -> np.ndarray:
|
|
# model.predict causes memory issue when it is called in a for loop
|
|
# return self.model.predict(img, verbose=0)[0, :]
|
|
return self.model(img, training=False).numpy()[0, :]
|
|
|
|
|
|
def load_model(
|
|
url="https://github.com/serengil/deepface_models/releases/download/v1.0/race_model_single_batch.h5",
|
|
) -> Model:
|
|
"""
|
|
Construct race model, download its weights and load
|
|
"""
|
|
|
|
model = VGGFace.base_model()
|
|
|
|
# --------------------------
|
|
|
|
classes = 6
|
|
base_model_output = Sequential()
|
|
base_model_output = Convolution2D(classes, (1, 1), name="predictions")(model.layers[-4].output)
|
|
base_model_output = Flatten()(base_model_output)
|
|
base_model_output = Activation("softmax")(base_model_output)
|
|
|
|
# --------------------------
|
|
|
|
race_model = Model(inputs=model.input, outputs=base_model_output)
|
|
|
|
# --------------------------
|
|
|
|
# load weights
|
|
weight_file = weight_utils.download_weights_if_necessary(
|
|
file_name="race_model_single_batch.h5", source_url=url
|
|
)
|
|
|
|
race_model = weight_utils.load_model_weights(
|
|
model=race_model, weight_file=weight_file
|
|
)
|
|
|
|
return race_model
|