mirror of
https://github.com/serengil/deepface.git
synced 2025-06-07 03:55:21 +00:00
114 lines
3.1 KiB
Python
114 lines
3.1 KiB
Python
from typing import List
|
|
import os
|
|
import gdown
|
|
import numpy as np
|
|
from deepface.commons import functions
|
|
from deepface.commons.logger import Logger
|
|
from deepface.models.FacialRecognition import FacialRecognition
|
|
|
|
logger = Logger(module="basemodels.DeepID")
|
|
|
|
tf_version = functions.get_tf_major_version()
|
|
|
|
if tf_version == 1:
|
|
from keras.models import Model
|
|
from keras.layers import (
|
|
Conv2D,
|
|
Activation,
|
|
Input,
|
|
Add,
|
|
MaxPooling2D,
|
|
Flatten,
|
|
Dense,
|
|
Dropout,
|
|
)
|
|
else:
|
|
from tensorflow.keras.models import Model
|
|
from tensorflow.keras.layers import (
|
|
Conv2D,
|
|
Activation,
|
|
Input,
|
|
Add,
|
|
MaxPooling2D,
|
|
Flatten,
|
|
Dense,
|
|
Dropout,
|
|
)
|
|
|
|
# pylint: disable=line-too-long
|
|
|
|
|
|
# -------------------------------------
|
|
|
|
# pylint: disable=too-few-public-methods
|
|
class DeepIdClient(FacialRecognition):
|
|
"""
|
|
DeepId model class
|
|
"""
|
|
|
|
def __init__(self):
|
|
self.model = load_model()
|
|
self.model_name = "DeepId"
|
|
self.input_shape = (47, 55)
|
|
self.output_shape = 160
|
|
|
|
def find_embeddings(self, img: np.ndarray) -> List[float]:
|
|
"""
|
|
find embeddings with DeepId model
|
|
Args:
|
|
img (np.ndarray): pre-loaded image in BGR
|
|
Returns
|
|
embeddings (list): multi-dimensional vector
|
|
"""
|
|
# model.predict causes memory issue when it is called in a for loop
|
|
# embedding = model.predict(img, verbose=0)[0].tolist()
|
|
return self.model(img, training=False).numpy()[0].tolist()
|
|
|
|
|
|
def load_model(
|
|
url="https://github.com/serengil/deepface_models/releases/download/v1.0/deepid_keras_weights.h5",
|
|
) -> Model:
|
|
"""
|
|
Construct DeepId model, download its weights and load
|
|
"""
|
|
|
|
myInput = Input(shape=(55, 47, 3))
|
|
|
|
x = Conv2D(20, (4, 4), name="Conv1", activation="relu", input_shape=(55, 47, 3))(myInput)
|
|
x = MaxPooling2D(pool_size=2, strides=2, name="Pool1")(x)
|
|
x = Dropout(rate=0.99, name="D1")(x)
|
|
|
|
x = Conv2D(40, (3, 3), name="Conv2", activation="relu")(x)
|
|
x = MaxPooling2D(pool_size=2, strides=2, name="Pool2")(x)
|
|
x = Dropout(rate=0.99, name="D2")(x)
|
|
|
|
x = Conv2D(60, (3, 3), name="Conv3", activation="relu")(x)
|
|
x = MaxPooling2D(pool_size=2, strides=2, name="Pool3")(x)
|
|
x = Dropout(rate=0.99, name="D3")(x)
|
|
|
|
x1 = Flatten()(x)
|
|
fc11 = Dense(160, name="fc11")(x1)
|
|
|
|
x2 = Conv2D(80, (2, 2), name="Conv4", activation="relu")(x)
|
|
x2 = Flatten()(x2)
|
|
fc12 = Dense(160, name="fc12")(x2)
|
|
|
|
y = Add()([fc11, fc12])
|
|
y = Activation("relu", name="deepid")(y)
|
|
|
|
model = Model(inputs=[myInput], outputs=y)
|
|
|
|
# ---------------------------------
|
|
|
|
home = functions.get_deepface_home()
|
|
|
|
if os.path.isfile(home + "/.deepface/weights/deepid_keras_weights.h5") != True:
|
|
logger.info("deepid_keras_weights.h5 will be downloaded...")
|
|
|
|
output = home + "/.deepface/weights/deepid_keras_weights.h5"
|
|
gdown.download(url, output, quiet=False)
|
|
|
|
model.load_weights(home + "/.deepface/weights/deepid_keras_weights.h5")
|
|
|
|
return model
|