deepface/deepface/basemodels/DlibResNet.py

74 lines
1.9 KiB
Python

import os
import zipfile
import bz2
import gdown
import numpy as np
from pathlib import Path
from deepface.commons import functions
class DlibResNet:
def __init__(self):
#this is not a must dependency
import dlib #19.20.0
self.layers = [DlibMetaData()]
#---------------------
home = functions.get_deepface_home()
weight_file = home+'/.deepface/weights/dlib_face_recognition_resnet_model_v1.dat'
#---------------------
#download pre-trained model if it does not exist
if os.path.isfile(weight_file) != True:
print("dlib_face_recognition_resnet_model_v1.dat is going to be downloaded")
url = "http://dlib.net/files/dlib_face_recognition_resnet_model_v1.dat.bz2"
output = home+'/.deepface/weights/'+url.split("/")[-1]
gdown.download(url, output, quiet=False)
zipfile = bz2.BZ2File(output)
data = zipfile.read()
newfilepath = output[:-4] #discard .bz2 extension
open(newfilepath, 'wb').write(data)
#---------------------
model = dlib.face_recognition_model_v1(weight_file)
self.__model = model
#---------------------
return None #classes must return None
def predict(self, img_aligned):
#functions.detectFace returns 4 dimensional images
if len(img_aligned.shape) == 4:
img_aligned = img_aligned[0]
#functions.detectFace returns bgr images
img_aligned = img_aligned[:,:,::-1] #bgr to rgb
#deepface.detectFace returns an array in scale of [0, 1] but dlib expects in scale of [0, 255]
if img_aligned.max() <= 1:
img_aligned = img_aligned * 255
img_aligned = img_aligned.astype(np.uint8)
model = self.__model
img_representation = model.compute_face_descriptor(img_aligned)
img_representation = np.array(img_representation)
img_representation = np.expand_dims(img_representation, axis = 0)
return img_representation
class DlibMetaData:
def __init__(self):
self.input_shape = [[1, 150, 150, 3]]