deepface/deepface/commons/functions.py
2020-04-20 14:30:11 +03:00

386 lines
11 KiB
Python

import os
import numpy as np
import pandas as pd
from keras.preprocessing.image import load_img, save_img, img_to_array
from keras.applications.imagenet_utils import preprocess_input
from keras.preprocessing import image
import cv2
from pathlib import Path
import gdown
import hashlib
import math
from PIL import Image
import copy
import base64
import multiprocessing
import subprocess
import tensorflow as tf
import keras
def loadBase64Img(uri):
encoded_data = uri.split(',')[1]
nparr = np.fromstring(base64.b64decode(encoded_data), np.uint8)
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
return img
def distance(a, b):
x1 = a[0]; y1 = a[1]
x2 = b[0]; y2 = b[1]
return math.sqrt(((x2 - x1) * (x2 - x1)) + ((y2 - y1) * (y2 - y1)))
def findFileHash(file):
BLOCK_SIZE = 65536 # The size of each read from the file
file_hash = hashlib.sha256() # Create the hash object, can use something other than `.sha256()` if you wish
with open(file, 'rb') as f: # Open the file to read it's bytes
fb = f.read(BLOCK_SIZE) # Read from the file. Take in the amount declared above
while len(fb) > 0: # While there is still data being read from the file
file_hash.update(fb) # Update the hash
fb = f.read(BLOCK_SIZE) # Read the next block from the file
return file_hash.hexdigest()
def initializeFolder():
home = str(Path.home())
if not os.path.exists(home+"/.deepface"):
os.mkdir(home+"/.deepface")
print("Directory ",home,"/.deepface created")
if not os.path.exists(home+"/.deepface/weights"):
os.mkdir(home+"/.deepface/weights")
print("Directory ",home,"/.deepface/weights created")
#----------------------------------
"""
#avoid interrupted file download
weight_hashes = [
['age_model_weights.h5', '0aeff75734bfe794113756d2bfd0ac823d51e9422c8961125b570871d3c2b114']
, ['facenet_weights.h5', '90659cc97bfda5999120f95d8e122f4d262cca11715a21e59ba024bcce816d5c']
, ['facial_expression_model_weights.h5', 'e8e8851d3fa05c001b1c27fd8841dfe08d7f82bb786a53ad8776725b7a1e824c']
, ['gender_model_weights.h5', '45513ce5678549112d25ab85b1926fb65986507d49c674a3d04b2ba70dba2eb5']
, ['openface_weights.h5', '5b41897ec6dd762cee20575eee54ed4d719a78cb982b2080a87dc14887d88a7a']
, ['race_model_single_batch.h5', 'eb22b28b1f6dfce65b64040af4e86003a5edccb169a1a338470dde270b6f5e54']
, ['vgg_face_weights.h5', '759266b9614d0fd5d65b97bf716818b746cc77ab5944c7bffc937c6ba9455d8c']
]
for i in weight_hashes:
weight_file = home+"/.deepface/weights/"+i[0]
expected_hash = i[1]
#check file exits
if os.path.isfile(weight_file) == True:
current_hash = findFileHash(weight_file)
if current_hash != expected_hash:
print("hash violated for ", i[0],". It's going to be removed.")
os.remove(weight_file)
"""
#----------------------------------
def findThreshold(model_name, distance_metric):
threshold = 0.40
if model_name == 'VGG-Face':
if distance_metric == 'cosine':
threshold = 0.40
elif distance_metric == 'euclidean':
threshold = 0.55
elif distance_metric == 'euclidean_l2':
threshold = 0.75
elif model_name == 'OpenFace':
if distance_metric == 'cosine':
threshold = 0.10
elif distance_metric == 'euclidean':
threshold = 0.55
elif distance_metric == 'euclidean_l2':
threshold = 0.55
elif model_name == 'Facenet':
if distance_metric == 'cosine':
threshold = 0.40
elif distance_metric == 'euclidean':
threshold = 10
elif distance_metric == 'euclidean_l2':
threshold = 0.80
elif model_name == 'DeepFace':
if distance_metric == 'cosine':
threshold = 0.23
elif distance_metric == 'euclidean':
threshold = 64
elif distance_metric == 'euclidean_l2':
threshold = 0.64
return threshold
def get_opencv_path():
opencv_home = cv2.__file__
folders = opencv_home.split(os.path.sep)[0:-1]
path = folders[0]
for folder in folders[1:]:
path = path + "/" + folder
face_detector_path = path+"/data/haarcascade_frontalface_default.xml"
eye_detector_path = path+"/data/haarcascade_eye.xml"
if os.path.isfile(face_detector_path) != True:
raise ValueError("Confirm that opencv is installed on your environment! Expected path ",face_detector_path," violated.")
return path+"/data/"
def detectFace(img, target_size=(224, 224), grayscale = False):
#-----------------------
exact_image = False
if type(img).__module__ == np.__name__:
exact_image = True
base64_img = False
if len(img) > 11 and img[0:11] == "data:image/":
base64_img = True
#-----------------------
opencv_path = get_opencv_path()
face_detector_path = opencv_path+"haarcascade_frontalface_default.xml"
eye_detector_path = opencv_path+"haarcascade_eye.xml"
if os.path.isfile(face_detector_path) != True:
raise ValueError("Confirm that opencv is installed on your environment! Expected path ",face_detector_path," violated.")
#--------------------------------
face_detector = cv2.CascadeClassifier(face_detector_path)
eye_detector = cv2.CascadeClassifier(eye_detector_path)
if base64_img == True:
img = loadBase64Img(img)
elif exact_image != True: #image path passed as input
if os.path.isfile(img) != True:
raise ValueError("Confirm that ",img," exists")
img = cv2.imread(img)
img_raw = img.copy()
#--------------------------------
faces = face_detector.detectMultiScale(img, 1.3, 5)
#print("found faces in ",image_path," is ",len(faces))
if len(faces) > 0:
x,y,w,h = faces[0]
detected_face = img[int(y):int(y+h), int(x):int(x+w)]
detected_face_gray = cv2.cvtColor(detected_face, cv2.COLOR_BGR2GRAY)
#---------------------------
#face alignment
eyes = eye_detector.detectMultiScale(detected_face_gray)
if len(eyes) >= 2:
#find the largest 2 eye
base_eyes = eyes[:, 2]
items = []
for i in range(0, len(base_eyes)):
item = (base_eyes[i], i)
items.append(item)
df = pd.DataFrame(items, columns = ["length", "idx"]).sort_values(by=['length'], ascending=False)
eyes = eyes[df.idx.values[0:2]]
#-----------------------
#decide left and right eye
eye_1 = eyes[0]; eye_2 = eyes[1]
if eye_1[0] < eye_2[0]:
left_eye = eye_1
right_eye = eye_2
else:
left_eye = eye_2
right_eye = eye_1
#-----------------------
#find center of eyes
left_eye_center = (int(left_eye[0] + (left_eye[2] / 2)), int(left_eye[1] + (left_eye[3] / 2)))
left_eye_x = left_eye_center[0]; left_eye_y = left_eye_center[1]
right_eye_center = (int(right_eye[0] + (right_eye[2]/2)), int(right_eye[1] + (right_eye[3]/2)))
right_eye_x = right_eye_center[0]; right_eye_y = right_eye_center[1]
#-----------------------
#find rotation direction
if left_eye_y > right_eye_y:
point_3rd = (right_eye_x, left_eye_y)
direction = -1 #rotate same direction to clock
else:
point_3rd = (left_eye_x, right_eye_y)
direction = 1 #rotate inverse direction of clock
#-----------------------
#find length of triangle edges
a = distance(left_eye_center, point_3rd)
b = distance(right_eye_center, point_3rd)
c = distance(right_eye_center, left_eye_center)
#-----------------------
#apply cosine rule
cos_a = (b*b + c*c - a*a)/(2*b*c)
angle = np.arccos(cos_a) #angle in radian
angle = (angle * 180) / math.pi #radian to degree
#-----------------------
#rotate base image
if direction == -1:
angle = 90 - angle
img = Image.fromarray(img_raw)
img = np.array(img.rotate(direction * angle))
#you recover the base image and face detection disappeared. apply again.
faces = face_detector.detectMultiScale(img, 1.3, 5)
if len(faces) > 0:
x,y,w,h = faces[0]
detected_face = img[int(y):int(y+h), int(x):int(x+w)]
#-----------------------
#face alignment block end
#---------------------------
#face alignment block needs colorful images. that's why, converting to gray scale logic moved to here.
if grayscale == True:
detected_face = cv2.cvtColor(detected_face, cv2.COLOR_BGR2GRAY)
detected_face = cv2.resize(detected_face, target_size)
img_pixels = image.img_to_array(detected_face)
img_pixels = np.expand_dims(img_pixels, axis = 0)
#normalize input in [0, 1]
img_pixels /= 255
return img_pixels
else:
if exact_image == True:
if grayscale == True:
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = cv2.resize(img, target_size)
img_pixels = image.img_to_array(img)
img_pixels = np.expand_dims(img_pixels, axis = 0)
img_pixels /= 255
return img_pixels
else:
raise ValueError("Face could not be detected in ", img,". Please confirm that the picture is a face photo.")
def allocateMemory():
#find allocated memories
gpu_indexes = []
memory_usage_percentages = []; available_memories = []; total_memories = []; utilizations = []
power_usages = []; power_capacities = []
try:
result = subprocess.check_output(['nvidia-smi'])
dashboard = result.decode("utf-8").split("=|")
dashboard = dashboard[1].split("\n")
gpu_idx = 0
for line in dashboard:
if ("MiB" in line):
power_info = line.split("|")[1]
power_capacity = int(power_info.split("/")[-1].replace("W", ""))
power_usage = int((power_info.split("/")[-2]).strip().split(" ")[-1].replace("W", ""))
power_usages.append(power_usage)
power_capacities.append(power_capacity)
#----------------------------
memory_info = line.split("|")[2].replace("MiB","").split("/")
utilization_info = int(line.split("|")[3].split("%")[0])
allocated = int(memory_info[0])
total_memory = int(memory_info[1])
available_memory = total_memory - allocated
total_memories.append(total_memory)
available_memories.append(available_memory)
memory_usage_percentages.append(round(100*int(allocated)/int(total_memory), 4))
utilizations.append(utilization_info)
gpu_indexes.append(gpu_idx)
gpu_idx = gpu_idx + 1
gpu_count = gpu_idx * 1
except Exception as err:
gpu_count = 0
#print(str(err))
#------------------------------
df = pd.DataFrame(gpu_indexes, columns = ["gpu_index"])
df["total_memories_in_mb"] = total_memories
df["available_memories_in_mb"] = available_memories
df["memory_usage_percentage"] = memory_usage_percentages
df["utilizations"] = utilizations
df["power_usages_in_watts"] = power_usages
df["power_capacities_in_watts"] = power_capacities
df = df.sort_values(by = ["available_memories_in_mb"], ascending = False).reset_index(drop = True)
#------------------------------
required_memory = 10000 #All deepface models require 9016 MiB
if df.shape[0] > 0: #has gpu
if df.iloc[0].available_memories_in_mb > required_memory:
my_gpu = str(int(df.iloc[0].gpu_index))
os.environ["CUDA_VISIBLE_DEVICES"] = my_gpu
#------------------------------
#tf allocates all memory by default
#this block avoids greedy approach
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.Session(config=config)
keras.backend.set_session(session)
print("DeepFace will run on GPU (gpu_", my_gpu,")")
else:
#this case has gpu but no enough memory to allocate
os.environ["CUDA_VISIBLE_DEVICES"] = "" #run it on cpu
print("Even though the system has GPUs, there is no enough space in memory to allocate.")
print("DeepFace will run on CPU")
else:
print("DeepFace will run on CPU")
#------------------------------