mirror of
https://github.com/serengil/deepface.git
synced 2025-06-07 03:55:21 +00:00
107 lines
3.1 KiB
Python
107 lines
3.1 KiB
Python
# built-in dependencies
|
|
import os
|
|
|
|
# 3rd party dependencies
|
|
import gdown
|
|
import numpy as np
|
|
import cv2
|
|
|
|
# project dependencies
|
|
from deepface.commons import package_utils, folder_utils
|
|
from deepface.models.Demography import Demography
|
|
from deepface.commons import logger as log
|
|
|
|
logger = log.get_singletonish_logger()
|
|
|
|
# -------------------------------------------
|
|
# pylint: disable=line-too-long
|
|
# -------------------------------------------
|
|
# dependency configuration
|
|
tf_version = package_utils.get_tf_major_version()
|
|
|
|
if tf_version == 1:
|
|
from keras.models import Sequential
|
|
from keras.layers import Conv2D, MaxPooling2D, AveragePooling2D, Flatten, Dense, Dropout
|
|
else:
|
|
from tensorflow.keras.models import Sequential
|
|
from tensorflow.keras.layers import (
|
|
Conv2D,
|
|
MaxPooling2D,
|
|
AveragePooling2D,
|
|
Flatten,
|
|
Dense,
|
|
Dropout,
|
|
)
|
|
# -------------------------------------------
|
|
|
|
# Labels for the emotions that can be detected by the model.
|
|
labels = ["angry", "disgust", "fear", "happy", "sad", "surprise", "neutral"]
|
|
|
|
# pylint: disable=too-few-public-methods
|
|
class EmotionClient(Demography):
|
|
"""
|
|
Emotion model class
|
|
"""
|
|
|
|
def __init__(self):
|
|
self.model = load_model()
|
|
self.model_name = "Emotion"
|
|
|
|
def predict(self, img: np.ndarray) -> np.ndarray:
|
|
img_gray = cv2.cvtColor(img[0], cv2.COLOR_BGR2GRAY)
|
|
img_gray = cv2.resize(img_gray, (48, 48))
|
|
img_gray = np.expand_dims(img_gray, axis=0)
|
|
|
|
emotion_predictions = self.model.predict(img_gray, verbose=0)[0, :]
|
|
return emotion_predictions
|
|
|
|
|
|
def load_model(
|
|
url="https://github.com/serengil/deepface_models/releases/download/v1.0/facial_expression_model_weights.h5",
|
|
) -> Sequential:
|
|
"""
|
|
Consruct emotion model, download and load weights
|
|
"""
|
|
|
|
num_classes = 7
|
|
|
|
model = Sequential()
|
|
|
|
# 1st convolution layer
|
|
model.add(Conv2D(64, (5, 5), activation="relu", input_shape=(48, 48, 1)))
|
|
model.add(MaxPooling2D(pool_size=(5, 5), strides=(2, 2)))
|
|
|
|
# 2nd convolution layer
|
|
model.add(Conv2D(64, (3, 3), activation="relu"))
|
|
model.add(Conv2D(64, (3, 3), activation="relu"))
|
|
model.add(AveragePooling2D(pool_size=(3, 3), strides=(2, 2)))
|
|
|
|
# 3rd convolution layer
|
|
model.add(Conv2D(128, (3, 3), activation="relu"))
|
|
model.add(Conv2D(128, (3, 3), activation="relu"))
|
|
model.add(AveragePooling2D(pool_size=(3, 3), strides=(2, 2)))
|
|
|
|
model.add(Flatten())
|
|
|
|
# fully connected neural networks
|
|
model.add(Dense(1024, activation="relu"))
|
|
model.add(Dropout(0.2))
|
|
model.add(Dense(1024, activation="relu"))
|
|
model.add(Dropout(0.2))
|
|
|
|
model.add(Dense(num_classes, activation="softmax"))
|
|
|
|
# ----------------------------
|
|
|
|
home = folder_utils.get_deepface_home()
|
|
|
|
if os.path.isfile(home + "/.deepface/weights/facial_expression_model_weights.h5") != True:
|
|
logger.info("facial_expression_model_weights.h5 will be downloaded...")
|
|
|
|
output = home + "/.deepface/weights/facial_expression_model_weights.h5"
|
|
gdown.download(url, output, quiet=False)
|
|
|
|
model.load_weights(home + "/.deepface/weights/facial_expression_model_weights.h5")
|
|
|
|
return model
|