Sefik Ilkin Serengil 8497682171 open issues
2024-02-02 17:33:31 +00:00

120 lines
4.4 KiB
Python

import os
from typing import Any, List
import numpy as np
import gdown
from deepface.models.Detector import Detector, DetectedFace, FacialAreaRegion
from deepface.modules import detection
from deepface.commons import folder_utils
from deepface.commons.logger import Logger
logger = Logger()
# Model's weights paths
PATH = "/.deepface/weights/yolov8n-face.pt"
# Google Drive URL from repo (https://github.com/derronqi/yolov8-face) ~6MB
WEIGHT_URL = "https://drive.google.com/uc?id=1qcr9DbgsX3ryrz2uU8w4Xm3cOrRywXqb"
# Confidence thresholds for landmarks detection
# used in alignment_procedure function
LANDMARKS_CONFIDENCE_THRESHOLD = 0.5
class YoloClient(Detector):
def __init__(self):
self.model = self.build_model()
def build_model(self) -> Any:
"""
Build a yolo detector model
Returns:
model (Any)
"""
# Import the Ultralytics YOLO model
try:
from ultralytics import YOLO
except ModuleNotFoundError as e:
raise ImportError(
"Yolo is an optional detector, ensure the library is installed. \
Please install using 'pip install ultralytics' "
) from e
weight_path = f"{folder_utils.get_deepface_home()}{PATH}"
# Download the model's weights if they don't exist
if not os.path.isfile(weight_path):
gdown.download(WEIGHT_URL, weight_path, quiet=False)
logger.info(f"Downloaded YOLO model {os.path.basename(weight_path)}")
# Return face_detector
return YOLO(weight_path)
def detect_faces(
self, img: np.ndarray, align: bool = False, expand_percentage: int = 0
) -> List[DetectedFace]:
"""
Detect and align face with yolo
Args:
img (np.ndarray): pre-loaded image as numpy array
align (bool): flag to enable or disable alignment after detection (default is True)
expand_percentage (int): expand detected facial area with a percentage
Returns:
results (List[Tuple[DetectedFace]): A list of DetectedFace objects
where each object contains:
- img (np.ndarray): The detected face as a NumPy array.
- facial_area (FacialAreaRegion): The facial area region represented as x, y, w, h
- confidence (float): The confidence score associated with the detected face.
"""
resp = []
# Detect faces
results = self.model.predict(img, verbose=False, show=False, conf=0.25)[0]
# For each face, extract the bounding box, the landmarks and confidence
for result in results:
# Extract the bounding box and the confidence
x, y, w, h = result.boxes.xywh.tolist()[0]
confidence = result.boxes.conf.tolist()[0]
x, y, w, h = int(x - w / 2), int(y - h / 2), int(w), int(h)
region = FacialAreaRegion(x=x, y=y, w=w, h=h)
# expand the facial area to be extracted and stay within img.shape limits
x2 = max(0, x - int((w * expand_percentage) / 100)) # expand left
y2 = max(0, y - int((h * expand_percentage) / 100)) # expand top
w2 = min(img.shape[1], w + int((w * expand_percentage) / 100)) # expand right
h2 = min(img.shape[0], h + int((h * expand_percentage) / 100)) # expand bottom
# detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
detected_face = img[int(y2) : int(y2 + h2), int(x2) : int(x2 + w2)]
if align:
# Tuple of x,y and confidence for left eye
left_eye = result.keypoints.xy[0][0], result.keypoints.conf[0][0]
# Tuple of x,y and confidence for right eye
right_eye = result.keypoints.xy[0][1], result.keypoints.conf[0][1]
# Check the landmarks confidence before alignment
if (
left_eye[1] > LANDMARKS_CONFIDENCE_THRESHOLD
and right_eye[1] > LANDMARKS_CONFIDENCE_THRESHOLD
):
detected_face = detection.align_face(
img=detected_face, left_eye=left_eye[0].cpu(), right_eye=right_eye[0].cpu()
)
detected_face_obj = DetectedFace(
img=detected_face, facial_area=region, confidence=confidence
)
resp.append(detected_face_obj)
return resp