deepface/deepface/DeepFace.py

647 lines
27 KiB
Python

# common dependencies
import os
import warnings
import logging
from typing import Any, Dict, IO, List, Union, Optional, Sequence
# this has to be set before importing tensorflow
os.environ["TF_USE_LEGACY_KERAS"] = "1"
# pylint: disable=wrong-import-position
# 3rd party dependencies
import numpy as np
import pandas as pd
import tensorflow as tf
# package dependencies
from deepface.commons import package_utils, folder_utils
from deepface.commons.logger import Logger
from deepface.modules import (
modeling,
representation,
verification,
recognition,
demography,
detection,
streaming,
preprocessing,
)
from deepface import __version__
logger = Logger()
# -----------------------------------
# configurations for dependencies
# users should install tf_keras package if they are using tf 2.16 or later versions
package_utils.validate_for_keras3()
warnings.filterwarnings("ignore")
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
tf_version = package_utils.get_tf_major_version()
if tf_version == 2:
tf.get_logger().setLevel(logging.ERROR)
# -----------------------------------
# create required folders if necessary to store model weights
folder_utils.initialize_folder()
def build_model(model_name: str, task: str = "facial_recognition") -> Any:
"""
This function builds a pre-trained model
Args:
model_name (str): model identifier
- VGG-Face, Facenet, Facenet512, OpenFace, DeepFace, DeepID, Dlib,
ArcFace, SFace GhostFaceNet and Buffalo_L for face recognition
- Age, Gender, Emotion, Race for facial attributes
- opencv, mtcnn, ssd, dlib, retinaface, mediapipe, yolov8, yolov11n,
yolov11s, yolov11m, yunet, fastmtcnn or centerface for face detectors
- Fasnet for spoofing
task (str): facial_recognition, facial_attribute, face_detector, spoofing
default is facial_recognition
Returns:
built_model
"""
return modeling.build_model(task=task, model_name=model_name)
def verify(
img1_path: Union[str, np.ndarray, IO[bytes], List[float]],
img2_path: Union[str, np.ndarray, IO[bytes], List[float]],
model_name: str = "VGG-Face",
detector_backend: str = "opencv",
distance_metric: str = "cosine",
enforce_detection: bool = True,
align: bool = True,
expand_percentage: int = 0,
normalization: str = "base",
silent: bool = False,
threshold: Optional[float] = None,
anti_spoofing: bool = False,
) -> Dict[str, Any]:
"""
Verify if an image pair represents the same person or different persons.
Args:
img1_path (str or np.ndarray or IO[bytes] or List[float]): Path to the first image.
Accepts exact image path as a string, numpy array (BGR), a file object that supports
at least `.read` and is opened in binary mode, base64 encoded images
or pre-calculated embeddings.
img2_path (str or np.ndarray or IO[bytes] or List[float]): Path to the second image.
Accepts exact image path as a string, numpy array (BGR), a file object that supports
at least `.read` and is opened in binary mode, base64 encoded images
or pre-calculated embeddings.
model_name (str): Model for face recognition. Options: VGG-Face, Facenet, Facenet512,
OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace and GhostFaceNet (default is VGG-Face).
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m',
'centerface' or 'skip' (default is opencv).
distance_metric (string): Metric for measuring similarity. Options: 'cosine',
'euclidean', 'euclidean_l2', 'angular' (default is cosine).
enforce_detection (boolean): If no face is detected in an image, raise an exception.
Set to False to avoid the exception for low-resolution images (default is True).
align (bool): Flag to enable face alignment (default is True).
expand_percentage (int): expand detected facial area with a percentage (default is 0).
normalization (string): Normalize the input image before feeding it to the model.
Options: base, raw, Facenet, Facenet2018, VGGFace, VGGFace2, ArcFace (default is base)
silent (boolean): Suppress or allow some log messages for a quieter analysis process
(default is False).
threshold (float): Specify a threshold to determine whether a pair represents the same
person or different individuals. This threshold is used for comparing distances.
If left unset, default pre-tuned threshold values will be applied based on the specified
model name and distance metric (default is None).
anti_spoofing (boolean): Flag to enable anti spoofing (default is False).
Returns:
result (dict): A dictionary containing verification results with following keys.
- 'verified' (bool): Indicates whether the images represent the same person (True)
or different persons (False).
- 'distance' (float): The distance measure between the face vectors.
A lower distance indicates higher similarity.
- 'threshold' (float): The maximum threshold used for verification.
If the distance is below this threshold, the images are considered a match.
- 'model' (str): The chosen face recognition model.
- 'distance_metric' (str): The chosen similarity metric for measuring distances.
- 'facial_areas' (dict): Rectangular regions of interest for faces in both images.
- 'img1': {'x': int, 'y': int, 'w': int, 'h': int}
Region of interest for the first image.
- 'img2': {'x': int, 'y': int, 'w': int, 'h': int}
Region of interest for the second image.
- 'time' (float): Time taken for the verification process in seconds.
"""
return verification.verify(
img1_path=img1_path,
img2_path=img2_path,
model_name=model_name,
detector_backend=detector_backend,
distance_metric=distance_metric,
enforce_detection=enforce_detection,
align=align,
expand_percentage=expand_percentage,
normalization=normalization,
silent=silent,
threshold=threshold,
anti_spoofing=anti_spoofing,
)
def analyze(
img_path: Union[str, np.ndarray, IO[bytes], List[str], List[np.ndarray], List[IO[bytes]]],
actions: Union[tuple, list] = ("emotion", "age", "gender", "race"),
enforce_detection: bool = True,
detector_backend: str = "opencv",
align: bool = True,
expand_percentage: int = 0,
silent: bool = False,
anti_spoofing: bool = False,
) -> Union[List[Dict[str, Any]], List[List[Dict[str, Any]]]]:
"""
Analyze facial attributes such as age, gender, emotion, and race in the provided image.
Args:
img_path (str, np.ndarray, IO[bytes], list): The exact path to the image, a numpy array
in BGR format, a file object that supports at least `.read` and is opened in binary
mode, or a base64 encoded image. If the source image contains multiple faces,
the result will include information for each detected face.
actions (tuple): Attributes to analyze. The default is ('age', 'gender', 'emotion', 'race').
You can exclude some of these attributes from the analysis if needed.
enforce_detection (boolean): If no face is detected in an image, raise an exception.
Set to False to avoid the exception for low-resolution images (default is True).
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m',
'centerface' or 'skip' (default is opencv).
distance_metric (string): Metric for measuring similarity. Options: 'cosine',
'euclidean', 'euclidean_l2', 'angular' (default is cosine).
align (boolean): Perform alignment based on the eye positions (default is True).
expand_percentage (int): expand detected facial area with a percentage (default is 0).
silent (boolean): Suppress or allow some log messages for a quieter analysis process
(default is False).
anti_spoofing (boolean): Flag to enable anti spoofing (default is False).
Returns:
(List[List[Dict[str, Any]]]): A list of analysis results if received batched image,
explained below.
(List[Dict[str, Any]]): A list of dictionaries, where each dictionary represents
the analysis results for a detected face. Each dictionary in the list contains the
following keys:
- 'region' (dict): Represents the rectangular region of the detected face in the image.
- 'x': x-coordinate of the top-left corner of the face.
- 'y': y-coordinate of the top-left corner of the face.
- 'w': Width of the detected face region.
- 'h': Height of the detected face region.
- 'age' (float): Estimated age of the detected face.
- 'face_confidence' (float): Confidence score for the detected face.
Indicates the reliability of the face detection.
- 'dominant_gender' (str): The dominant gender in the detected face.
Either "Man" or "Woman".
- 'gender' (dict): Confidence scores for each gender category.
- 'Man': Confidence score for the male gender.
- 'Woman': Confidence score for the female gender.
- 'dominant_emotion' (str): The dominant emotion in the detected face.
Possible values include "sad," "angry," "surprise," "fear," "happy,"
"disgust," and "neutral"
- 'emotion' (dict): Confidence scores for each emotion category.
- 'sad': Confidence score for sadness.
- 'angry': Confidence score for anger.
- 'surprise': Confidence score for surprise.
- 'fear': Confidence score for fear.
- 'happy': Confidence score for happiness.
- 'disgust': Confidence score for disgust.
- 'neutral': Confidence score for neutrality.
- 'dominant_race' (str): The dominant race in the detected face.
Possible values include "indian," "asian," "latino hispanic,"
"black," "middle eastern," and "white."
- 'race' (dict): Confidence scores for each race category.
- 'indian': Confidence score for Indian ethnicity.
- 'asian': Confidence score for Asian ethnicity.
- 'latino hispanic': Confidence score for Latino/Hispanic ethnicity.
- 'black': Confidence score for Black ethnicity.
- 'middle eastern': Confidence score for Middle Eastern ethnicity.
- 'white': Confidence score for White ethnicity.
"""
return demography.analyze(
img_path=img_path,
actions=actions,
enforce_detection=enforce_detection,
detector_backend=detector_backend,
align=align,
expand_percentage=expand_percentage,
silent=silent,
anti_spoofing=anti_spoofing,
)
def find(
img_path: Union[str, np.ndarray, IO[bytes]],
db_path: str,
model_name: str = "VGG-Face",
distance_metric: str = "cosine",
enforce_detection: bool = True,
detector_backend: str = "opencv",
align: bool = True,
expand_percentage: int = 0,
threshold: Optional[float] = None,
normalization: str = "base",
silent: bool = False,
refresh_database: bool = True,
anti_spoofing: bool = False,
batched: bool = False,
) -> Union[List[pd.DataFrame], List[List[Dict[str, Any]]]]:
"""
Identify individuals in a database
Args:
img_path (str or np.ndarray or IO[bytes]): The exact path to the image, a numpy array
in BGR format, a file object that supports at least `.read` and is opened in binary
mode, or a base64 encoded image. If the source image contains multiple
faces, the result will include information for each detected face.
db_path (string): Path to the folder containing image files. All detected faces
in the database will be considered in the decision-making process.
model_name (str): Model for face recognition. Options: VGG-Face, Facenet, Facenet512,
OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace and GhostFaceNet (default is VGG-Face).
distance_metric (string): Metric for measuring similarity. Options: 'cosine',
'euclidean', 'euclidean_l2', 'angular' (default is cosine).
enforce_detection (boolean): If no face is detected in an image, raise an exception.
Set to False to avoid the exception for low-resolution images (default is True).
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m',
'centerface' or 'skip' (default is opencv).
align (boolean): Perform alignment based on the eye positions (default is True).
expand_percentage (int): expand detected facial area with a percentage (default is 0).
threshold (float): Specify a threshold to determine whether a pair represents the same
person or different individuals. This threshold is used for comparing distances.
If left unset, default pre-tuned threshold values will be applied based on the specified
model name and distance metric (default is None).
normalization (string): Normalize the input image before feeding it to the model.
Options: base, raw, Facenet, Facenet2018, VGGFace, VGGFace2, ArcFace (default is base).
silent (boolean): Suppress or allow some log messages for a quieter analysis process
(default is False).
refresh_database (boolean): Synchronizes the images representation (pkl) file with the
directory/db files, if set to false, it will ignore any file changes inside the db_path
(default is True).
anti_spoofing (boolean): Flag to enable anti spoofing (default is False).
Returns:
results (List[pd.DataFrame] or List[List[Dict[str, Any]]]):
A list of pandas dataframes (if `batched=False`) or
a list of dicts (if `batched=True`).
Each dataframe or dict corresponds to the identity information for
an individual detected in the source image.
Note: If you have a large database and/or a source photo with many faces,
use `batched=True`, as it is optimized for large batch processing.
Please pay attention that when using `batched=True`, the function returns
a list of dicts (not a list of DataFrames),
but with the same keys as the columns in the DataFrame.
The DataFrame columns or dict keys include:
- 'identity': Identity label of the detected individual.
- 'target_x', 'target_y', 'target_w', 'target_h': Bounding box coordinates of the
target face in the database.
- 'source_x', 'source_y', 'source_w', 'source_h': Bounding box coordinates of the
detected face in the source image.
- 'threshold': threshold to determine a pair whether same person or different persons
- 'distance': Similarity score between the faces based on the
specified model and distance metric
"""
return recognition.find(
img_path=img_path,
db_path=db_path,
model_name=model_name,
distance_metric=distance_metric,
enforce_detection=enforce_detection,
detector_backend=detector_backend,
align=align,
expand_percentage=expand_percentage,
threshold=threshold,
normalization=normalization,
silent=silent,
refresh_database=refresh_database,
anti_spoofing=anti_spoofing,
batched=batched,
)
def represent(
img_path: Union[str, np.ndarray, IO[bytes], Sequence[Union[str, np.ndarray, IO[bytes]]]],
model_name: str = "VGG-Face",
enforce_detection: bool = True,
detector_backend: str = "opencv",
align: bool = True,
expand_percentage: int = 0,
normalization: str = "base",
anti_spoofing: bool = False,
max_faces: Optional[int] = None,
) -> Union[List[Dict[str, Any]], List[List[Dict[str, Any]]]]:
"""
Represent facial images as multi-dimensional vector embeddings.
Args:
img_path (str, np.ndarray, IO[bytes], or Sequence[Union[str, np.ndarray, IO[bytes]]]):
The exact path to the image, a numpy array
in BGR format, a file object that supports at least `.read` and is opened in binary
mode, or a base64 encoded image. If the source image contains multiple faces,
the result will include information for each detected face. If a sequence is provided,
each element should be a string or numpy array representing an image, and the function
will process images in batch.
model_name (str): Model for face recognition. Options: VGG-Face, Facenet, Facenet512,
OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace and GhostFaceNet
(default is VGG-Face.).
enforce_detection (boolean): If no face is detected in an image, raise an exception.
Default is True. Set to False to avoid the exception for low-resolution images
(default is True).
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m',
'centerface' or 'skip' (default is opencv).
align (boolean): Perform alignment based on the eye positions (default is True).
expand_percentage (int): expand detected facial area with a percentage (default is 0).
normalization (string): Normalize the input image before feeding it to the model.
Default is base. Options: base, raw, Facenet, Facenet2018, VGGFace, VGGFace2, ArcFace
(default is base).
anti_spoofing (boolean): Flag to enable anti spoofing (default is False).
max_faces (int): Set a limit on the number of faces to be processed (default is None).
Returns:
results (List[Dict[str, Any]] or List[Dict[str, Any]]): A list of dictionaries.
Result type becomes List of List of Dict if batch input passed.
Each containing the following fields:
- embedding (List[float]): Multidimensional vector representing facial features.
The number of dimensions varies based on the reference model
(e.g., FaceNet returns 128 dimensions, VGG-Face returns 4096 dimensions).
- facial_area (dict): Detected facial area by face detection in dictionary format.
Contains 'x' and 'y' as the left-corner point, and 'w' and 'h'
as the width and height. If `detector_backend` is set to 'skip', it represents
the full image area and is nonsensical.
- face_confidence (float): Confidence score of face detection. If `detector_backend` is set
to 'skip', the confidence will be 0 and is nonsensical.
"""
return representation.represent(
img_path=img_path,
model_name=model_name,
enforce_detection=enforce_detection,
detector_backend=detector_backend,
align=align,
expand_percentage=expand_percentage,
normalization=normalization,
anti_spoofing=anti_spoofing,
max_faces=max_faces,
)
def stream(
db_path: str = "",
model_name: str = "VGG-Face",
detector_backend: str = "opencv",
distance_metric: str = "cosine",
enable_face_analysis: bool = True,
source: Any = 0,
time_threshold: int = 5,
frame_threshold: int = 5,
anti_spoofing: bool = False,
output_path: Optional[str] = None,
) -> None:
"""
Run real time face recognition and facial attribute analysis
Args:
db_path (string): Path to the folder containing image files. All detected faces
in the database will be considered in the decision-making process.
model_name (str): Model for face recognition. Options: VGG-Face, Facenet, Facenet512,
OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace and GhostFaceNet (default is VGG-Face).
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m',
'centerface' or 'skip' (default is opencv).
distance_metric (string): Metric for measuring similarity. Options: 'cosine',
'euclidean', 'euclidean_l2', 'angular' (default is cosine).
enable_face_analysis (bool): Flag to enable face analysis (default is True).
source (Any): The source for the video stream (default is 0, which represents the
default camera).
time_threshold (int): The time threshold (in seconds) for face recognition (default is 5).
frame_threshold (int): The frame threshold for face recognition (default is 5).
anti_spoofing (boolean): Flag to enable anti spoofing (default is False).
output_path (str): Path to save the output video. (default is None
If None, no video is saved).
Returns:
None
"""
time_threshold = max(time_threshold, 1)
frame_threshold = max(frame_threshold, 1)
streaming.analysis(
db_path=db_path,
model_name=model_name,
detector_backend=detector_backend,
distance_metric=distance_metric,
enable_face_analysis=enable_face_analysis,
source=source,
time_threshold=time_threshold,
frame_threshold=frame_threshold,
anti_spoofing=anti_spoofing,
output_path=output_path,
)
def extract_faces(
img_path: Union[str, np.ndarray, IO[bytes]],
detector_backend: str = "opencv",
enforce_detection: bool = True,
align: bool = True,
expand_percentage: int = 0,
grayscale: bool = False,
color_face: str = "rgb",
normalize_face: bool = True,
anti_spoofing: bool = False,
) -> List[Dict[str, Any]]:
"""
Extract faces from a given image
Args:
img_path (str or np.ndarray or IO[bytes]): Path to the first image. Accepts exact image path
as a string, numpy array (BGR), a file object that supports at least `.read` and is
opened in binary mode, or base64 encoded images.
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m',
'centerface' or 'skip' (default is opencv).
enforce_detection (boolean): If no face is detected in an image, raise an exception.
Set to False to avoid the exception for low-resolution images (default is True).
align (bool): Flag to enable face alignment (default is True).
expand_percentage (int): expand detected facial area with a percentage (default is 0).
grayscale (boolean): (Deprecated) Flag to convert the output face image to grayscale
(default is False).
color_face (string): Color to return face image output. Options: 'rgb', 'bgr' or 'gray'
(default is 'rgb').
normalize_face (boolean): Flag to enable normalization (divide by 255) of the output
face image output face image normalization (default is True).
anti_spoofing (boolean): Flag to enable anti spoofing (default is False).
Returns:
results (List[Dict[str, Any]]): A list of dictionaries, where each dictionary contains:
- "face" (np.ndarray): The detected face as a NumPy array.
- "facial_area" (Dict[str, Any]): The detected face's regions as a dictionary containing:
- keys 'x', 'y', 'w', 'h' with int values
- keys 'left_eye', 'right_eye' with a tuple of 2 ints as values. left and right eyes
are eyes on the left and right respectively with respect to the person itself
instead of observer.
- "confidence" (float): The confidence score associated with the detected face.
- "is_real" (boolean): antispoofing analyze result. this key is just available in the
result only if anti_spoofing is set to True in input arguments.
- "antispoof_score" (float): score of antispoofing analyze result. this key is
just available in the result only if anti_spoofing is set to True in input arguments.
"""
return detection.extract_faces(
img_path=img_path,
detector_backend=detector_backend,
enforce_detection=enforce_detection,
align=align,
expand_percentage=expand_percentage,
grayscale=grayscale,
color_face=color_face,
normalize_face=normalize_face,
anti_spoofing=anti_spoofing,
)
def cli() -> None:
"""
command line interface function will be offered in this block
"""
import fire
fire.Fire()
# deprecated function(s)
def detectFace(
img_path: Union[str, np.ndarray],
target_size: tuple = (224, 224),
detector_backend: str = "opencv",
enforce_detection: bool = True,
align: bool = True,
) -> Union[np.ndarray, None]:
"""
Deprecated face detection function. Use extract_faces for same functionality.
Args:
img_path (str or np.ndarray): Path to the first image. Accepts exact image path
as a string, numpy array (BGR), or base64 encoded images.
target_size (tuple): final shape of facial image. black pixels will be
added to resize the image (default is (224, 224)).
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m',
'centerface' or 'skip' (default is opencv).
enforce_detection (boolean): If no face is detected in an image, raise an exception.
Set to False to avoid the exception for low-resolution images (default is True).
align (bool): Flag to enable face alignment (default is True).
Returns:
img (np.ndarray): detected (and aligned) facial area image as numpy array
"""
logger.warn("Function detectFace is deprecated. Use extract_faces instead.")
face_objs = extract_faces(
img_path=img_path,
detector_backend=detector_backend,
grayscale=False,
enforce_detection=enforce_detection,
align=align,
)
extracted_face = None
if len(face_objs) > 0:
extracted_face = face_objs[0]["face"]
extracted_face = preprocessing.resize_image(img=extracted_face, target_size=target_size)
return extracted_face