deepface/api/api.py
Sefik Ilkin Serengil 700867c7db new interface
2023-01-24 22:57:35 +00:00

309 lines
7.1 KiB
Python

import warnings
warnings.filterwarnings("ignore")
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
#------------------------------
from flask import Flask, jsonify, request, make_response
import argparse
import uuid
import json
import time
from tqdm import tqdm
#------------------------------
import tensorflow as tf
tf_version = int(tf.__version__.split(".")[0])
#------------------------------
if tf_version == 2:
import logging
tf.get_logger().setLevel(logging.ERROR)
#------------------------------
from deepface import DeepFace
#------------------------------
app = Flask(__name__)
#------------------------------
if tf_version == 1:
graph = tf.get_default_graph()
#------------------------------
#Service API Interface
@app.route('/')
def index():
return '<h1>Hello, world!</h1>'
@app.route('/analyze', methods=['POST'])
def analyze():
global graph
tic = time.time()
req = request.get_json()
trx_id = uuid.uuid4()
#---------------------------
if tf_version == 1:
with graph.as_default():
resp_obj = analyzeWrapper(req, trx_id)
elif tf_version == 2:
resp_obj = analyzeWrapper(req, trx_id)
#---------------------------
toc = time.time()
resp_obj["trx_id"] = trx_id
resp_obj["seconds"] = toc-tic
return resp_obj, 200
def analyzeWrapper(req, trx_id = 0):
resp_obj = {}
instances = []
if "img" in list(req.keys()):
raw_content = req["img"] #list
for item in raw_content: #item is in type of dict
instances.append(item)
if len(instances) == 0:
return {'success': False, 'error': 'you must pass at least one img object in your request'}
print("Analyzing ", len(instances)," instances")
#---------------------------
detector_backend = 'opencv'
actions= ['emotion', 'age', 'gender', 'race']
align = True
enforce_detection = True
if "actions" in list(req.keys()):
actions = req["actions"]
if "detector_backend" in list(req.keys()):
detector_backend = req["detector_backend"]
if "align" in list(req.keys()):
align = req["align"]
if "enforce_detection" in list(req.keys()):
enforce_detection = req["enforce_detection"]
#---------------------------
try:
resp_obj["demographies"] = {}
for idx, instance in enumerate(instances):
demographies = DeepFace.analyze(img_path = instance,
detector_backend = detector_backend,
actions = actions, align = align,
enforce_detection = enforce_detection)
resp_obj["demographies"][f"img_{idx+1}"] = demographies
except Exception as err:
print("Exception: ", str(err))
return jsonify({'success': False, 'error': str(err)}), 205
#---------------
return resp_obj
@app.route('/verify', methods=['POST'])
def verify():
global graph
tic = time.time()
req = request.get_json()
trx_id = uuid.uuid4()
resp_obj = jsonify({'success': False})
if tf_version == 1:
with graph.as_default():
resp_obj = verifyWrapper(req, trx_id)
elif tf_version == 2:
resp_obj = verifyWrapper(req, trx_id)
#--------------------------
toc = time.time()
resp_obj["trx_id"] = trx_id
resp_obj["seconds"] = toc-tic
return resp_obj, 200
def verifyWrapper(req, trx_id = 0):
resp_obj = {}
model_name = "VGG-Face"; distance_metric = "cosine"; detector_backend = "opencv"
align = True; enforce_detection = True
if "model_name" in list(req.keys()):
model_name = req["model_name"]
if "distance_metric" in list(req.keys()):
distance_metric = req["distance_metric"]
if "detector_backend" in list(req.keys()):
detector_backend = req["detector_backend"]
if "align" in list(req.keys()):
align = req["align"]
if "enforce_detection" in list(req.keys()):
enforce_detection = req["enforce_detection"]
#----------------------
try:
if "img" in list(req.keys()):
raw_content = req["img"] #list
if len(raw_content) == 0:
return jsonify({'success': False, 'error': 'you must pass at least one img object in your request'}), 205
print("Input request of ", trx_id, " has ",len(raw_content)," pairs to verify")
results = []
for idx, item in enumerate(raw_content): #item is in type of dict
img1 = item["img1"]; img2 = item["img2"]
validate_img1 = False
if len(img1) > 11 and img1[0:11] == "data:image/":
validate_img1 = True
validate_img2 = False
if len(img2) > 11 and img2[0:11] == "data:image/":
validate_img2 = True
if validate_img1 != True or validate_img2 != True:
return jsonify({'success': False, 'error': 'you must pass both img1 and img2 as base64 encoded string'}), 205
result = DeepFace.verify(img1_path=img1,
img2_path=img2,
model_name=model_name,
detector_backend=detector_backend,
distance_metric=distance_metric,
align=align,
enforce_detection=enforce_detection,
)
results.append(result)
resp_obj[f"pairs"] = results
except Exception as err:
resp_obj = jsonify({'success': False, 'error': str(err)}), 205
return resp_obj
@app.route('/represent', methods=['POST'])
def represent():
global graph
tic = time.time()
req = request.get_json()
trx_id = uuid.uuid4()
resp_obj = jsonify({'success': False})
if tf_version == 1:
with graph.as_default():
resp_obj = representWrapper(req, trx_id)
elif tf_version == 2:
resp_obj = representWrapper(req, trx_id)
#--------------------------
toc = time.time()
resp_obj["trx_id"] = trx_id
resp_obj["seconds"] = toc-tic
return resp_obj, 200
def representWrapper(req, trx_id = 0):
resp_obj = jsonify({'success': False})
#-------------------------------------
#find out model
model_name = "VGG-Face"; detector_backend = 'opencv'
if "model_name" in list(req.keys()):
model_name = req["model_name"]
if "detector_backend" in list(req.keys()):
detector_backend = req["detector_backend"]
#-------------------------------------
#retrieve images from request
img = ""
if "img" in list(req.keys()):
img = req["img"] #list
#print("img: ", img)
validate_img = False
if len(img) > 11 and img[0:11] == "data:image/":
validate_img = True
if validate_img != True:
print("invalid image passed!")
return jsonify({'success': False, 'error': 'you must pass img as base64 encoded string'}), 205
#-------------------------------------
#call represent function from the interface
try:
embedding_objs = DeepFace.represent(img
, model_name = model_name
, detector_backend = detector_backend
)
except Exception as err:
print("Exception: ",str(err))
resp_obj = jsonify({'success': False, 'error': str(err)}), 205
#-------------------------------------
#print("embedding is ", len(embedding)," dimensional vector")
resp_obj = {}
faces = []
for embedding_obj in embedding_objs:
face = {}
face["embedding"] = embedding_obj["embedding"]
face["facial_area"] = embedding_obj["facial_area"]
face["model_name"] = model_name
face["detector_backend"] = detector_backend
faces.append(face)
resp_obj["embeddings"] = faces
#-------------------------------------
return resp_obj
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'-p', '--port',
type=int,
default=5000,
help='Port of serving api')
args = parser.parse_args()
app.run(host='0.0.0.0', port=args.port)