mirror of
https://github.com/serengil/deepface.git
synced 2025-06-08 12:35:22 +00:00
114 lines
3.6 KiB
Python
114 lines
3.6 KiB
Python
import os
|
|
import gdown
|
|
import cv2
|
|
import pandas as pd
|
|
from deepface.detectors import OpenCvWrapper
|
|
from deepface.commons import functions
|
|
|
|
# pylint: disable=line-too-long
|
|
|
|
|
|
def build_model():
|
|
|
|
home = functions.get_deepface_home()
|
|
|
|
# model structure
|
|
if os.path.isfile(home + "/.deepface/weights/deploy.prototxt") != True:
|
|
|
|
print("deploy.prototxt will be downloaded...")
|
|
|
|
url = "https://github.com/opencv/opencv/raw/3.4.0/samples/dnn/face_detector/deploy.prototxt"
|
|
|
|
output = home + "/.deepface/weights/deploy.prototxt"
|
|
|
|
gdown.download(url, output, quiet=False)
|
|
|
|
# pre-trained weights
|
|
if os.path.isfile(home + "/.deepface/weights/res10_300x300_ssd_iter_140000.caffemodel") != True:
|
|
|
|
print("res10_300x300_ssd_iter_140000.caffemodel will be downloaded...")
|
|
|
|
url = "https://github.com/opencv/opencv_3rdparty/raw/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel"
|
|
|
|
output = home + "/.deepface/weights/res10_300x300_ssd_iter_140000.caffemodel"
|
|
|
|
gdown.download(url, output, quiet=False)
|
|
|
|
face_detector = cv2.dnn.readNetFromCaffe(
|
|
home + "/.deepface/weights/deploy.prototxt",
|
|
home + "/.deepface/weights/res10_300x300_ssd_iter_140000.caffemodel",
|
|
)
|
|
|
|
eye_detector = OpenCvWrapper.build_cascade("haarcascade_eye")
|
|
|
|
detector = {}
|
|
detector["face_detector"] = face_detector
|
|
detector["eye_detector"] = eye_detector
|
|
|
|
return detector
|
|
|
|
|
|
def detect_face(detector, img, align=True):
|
|
|
|
resp = []
|
|
|
|
detected_face = None
|
|
img_region = [0, 0, img.shape[1], img.shape[0]]
|
|
|
|
ssd_labels = ["img_id", "is_face", "confidence", "left", "top", "right", "bottom"]
|
|
|
|
target_size = (300, 300)
|
|
|
|
base_img = img.copy() # we will restore base_img to img later
|
|
|
|
original_size = img.shape
|
|
|
|
img = cv2.resize(img, target_size)
|
|
|
|
aspect_ratio_x = original_size[1] / target_size[1]
|
|
aspect_ratio_y = original_size[0] / target_size[0]
|
|
|
|
imageBlob = cv2.dnn.blobFromImage(image=img)
|
|
|
|
face_detector = detector["face_detector"]
|
|
face_detector.setInput(imageBlob)
|
|
detections = face_detector.forward()
|
|
|
|
detections_df = pd.DataFrame(detections[0][0], columns=ssd_labels)
|
|
|
|
detections_df = detections_df[detections_df["is_face"] == 1] # 0: background, 1: face
|
|
detections_df = detections_df[detections_df["confidence"] >= 0.90]
|
|
|
|
detections_df["left"] = (detections_df["left"] * 300).astype(int)
|
|
detections_df["bottom"] = (detections_df["bottom"] * 300).astype(int)
|
|
detections_df["right"] = (detections_df["right"] * 300).astype(int)
|
|
detections_df["top"] = (detections_df["top"] * 300).astype(int)
|
|
|
|
if detections_df.shape[0] > 0:
|
|
|
|
for _, instance in detections_df.iterrows():
|
|
|
|
left = instance["left"]
|
|
right = instance["right"]
|
|
bottom = instance["bottom"]
|
|
top = instance["top"]
|
|
|
|
detected_face = base_img[
|
|
int(top * aspect_ratio_y) : int(bottom * aspect_ratio_y),
|
|
int(left * aspect_ratio_x) : int(right * aspect_ratio_x),
|
|
]
|
|
img_region = [
|
|
int(left * aspect_ratio_x),
|
|
int(top * aspect_ratio_y),
|
|
int(right * aspect_ratio_x) - int(left * aspect_ratio_x),
|
|
int(bottom * aspect_ratio_y) - int(top * aspect_ratio_y),
|
|
]
|
|
confidence = instance["confidence"]
|
|
|
|
if align:
|
|
detected_face = OpenCvWrapper.align_face(detector["eye_detector"], detected_face)
|
|
|
|
resp.append((detected_face, img_region, confidence))
|
|
|
|
return resp
|