deepface/deepface/detectors/SsdWrapper.py
Sefik Ilkin Serengil 7a978d29c5 linting
2023-01-29 00:45:25 +00:00

114 lines
3.6 KiB
Python

import os
import gdown
import cv2
import pandas as pd
from deepface.detectors import OpenCvWrapper
from deepface.commons import functions
# pylint: disable=line-too-long
def build_model():
home = functions.get_deepface_home()
# model structure
if os.path.isfile(home + "/.deepface/weights/deploy.prototxt") != True:
print("deploy.prototxt will be downloaded...")
url = "https://github.com/opencv/opencv/raw/3.4.0/samples/dnn/face_detector/deploy.prototxt"
output = home + "/.deepface/weights/deploy.prototxt"
gdown.download(url, output, quiet=False)
# pre-trained weights
if os.path.isfile(home + "/.deepface/weights/res10_300x300_ssd_iter_140000.caffemodel") != True:
print("res10_300x300_ssd_iter_140000.caffemodel will be downloaded...")
url = "https://github.com/opencv/opencv_3rdparty/raw/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel"
output = home + "/.deepface/weights/res10_300x300_ssd_iter_140000.caffemodel"
gdown.download(url, output, quiet=False)
face_detector = cv2.dnn.readNetFromCaffe(
home + "/.deepface/weights/deploy.prototxt",
home + "/.deepface/weights/res10_300x300_ssd_iter_140000.caffemodel",
)
eye_detector = OpenCvWrapper.build_cascade("haarcascade_eye")
detector = {}
detector["face_detector"] = face_detector
detector["eye_detector"] = eye_detector
return detector
def detect_face(detector, img, align=True):
resp = []
detected_face = None
img_region = [0, 0, img.shape[1], img.shape[0]]
ssd_labels = ["img_id", "is_face", "confidence", "left", "top", "right", "bottom"]
target_size = (300, 300)
base_img = img.copy() # we will restore base_img to img later
original_size = img.shape
img = cv2.resize(img, target_size)
aspect_ratio_x = original_size[1] / target_size[1]
aspect_ratio_y = original_size[0] / target_size[0]
imageBlob = cv2.dnn.blobFromImage(image=img)
face_detector = detector["face_detector"]
face_detector.setInput(imageBlob)
detections = face_detector.forward()
detections_df = pd.DataFrame(detections[0][0], columns=ssd_labels)
detections_df = detections_df[detections_df["is_face"] == 1] # 0: background, 1: face
detections_df = detections_df[detections_df["confidence"] >= 0.90]
detections_df["left"] = (detections_df["left"] * 300).astype(int)
detections_df["bottom"] = (detections_df["bottom"] * 300).astype(int)
detections_df["right"] = (detections_df["right"] * 300).astype(int)
detections_df["top"] = (detections_df["top"] * 300).astype(int)
if detections_df.shape[0] > 0:
for _, instance in detections_df.iterrows():
left = instance["left"]
right = instance["right"]
bottom = instance["bottom"]
top = instance["top"]
detected_face = base_img[
int(top * aspect_ratio_y) : int(bottom * aspect_ratio_y),
int(left * aspect_ratio_x) : int(right * aspect_ratio_x),
]
img_region = [
int(left * aspect_ratio_x),
int(top * aspect_ratio_y),
int(right * aspect_ratio_x) - int(left * aspect_ratio_x),
int(bottom * aspect_ratio_y) - int(top * aspect_ratio_y),
]
confidence = instance["confidence"]
if align:
detected_face = OpenCvWrapper.align_face(detector["eye_detector"], detected_face)
resp.append((detected_face, img_region, confidence))
return resp