deepface/deepface/models/Demography.py

49 lines
1.5 KiB
Python

from typing import Union, List
from abc import ABC, abstractmethod
import numpy as np
from deepface.commons import package_utils
tf_version = package_utils.get_tf_major_version()
if tf_version == 1:
from keras.models import Model
else:
from tensorflow.keras.models import Model
# Notice that all facial attribute analysis models must be inherited from this class
# pylint: disable=too-few-public-methods
class Demography(ABC):
model: Model
model_name: str
@abstractmethod
def predict(self, img: Union[np.ndarray, List[np.ndarray]]) -> Union[np.ndarray, np.float64]:
pass
def _preprocess_batch_or_single_input(self, img: Union[np.ndarray, List[np.ndarray]]) -> np.ndarray:
"""
Preprocess single or batch of images, return as 4-D numpy array.
Args:
img: Single image as np.ndarray (224, 224, 3) or
List of images as List[np.ndarray] or
Batch of images as np.ndarray (n, 224, 224, 3)
Returns:
Four-dimensional numpy array (n, 224, 224, 3)
"""
if isinstance(img, list): # Convert from list to image batch.
image_batch = np.array(img)
else:
image_batch = img
# Remove batch dimension in advance if exists
image_batch = image_batch.squeeze()
# Check input dimension
if len(image_batch.shape) == 3:
# Single image - add batch dimension
imgs = np.expand_dims(image_batch, axis=0)
return image_batch